.(Note

- 1. Find the general solution of the equation (10%) $x^2y''-2xy'+2y = \ln(x)+1.$
- 2. Use the Laplace transform to solve the system (10%) $y_1'-2y_2'+3y_3=0$, $y_1-4y_2'+3y_3'=t$, $y_1-2y_2'+3y_3'=1$; $y_1(0)=y_2(0)=y_3(0)=0$.
- 3. Given the equation $16x^2y''-4x^2y'+3y=0$,
 - (a) Show that zero is a regular singular point. (3%)

(b) Find and solve the indicial equation. (4%)

- (c) Determine the recurrence relation. (4%)
- (d) Find the first four nonzero terms of two linearly independent Frobenius solutions. (4%)
- Fill in the blank or answer True or False (10%)
- rill in the blank of answer true of False (10%)
- (a) If f is not piecewise continuous on $[0, \infty)$, then the Laplace transform $L\{f(t)\}$ will not exist.

 (b) $F(s) = \frac{s^2}{s^2 + s^2}$ is not the Laplace transform of a function that is piecewise continuous and o
- (d) $L^{-1}\left\{\frac{s+\pi}{s^2+\pi^2}e^{-s}\right\} = \underline{\qquad}$ (Note: $u(t-k) = \begin{cases} 1, & t \ge k \\ 0, & t < k \end{cases}$ is a unit step function)
- (e) If $L\{f(t)\} = F(s)$ and k > 0, then $L\{e^{a(t-k)}f(t-k)u(t-k)\} =$ ______
- $u(t-k) = \begin{cases} 1, & t \ge k \\ 0, & t < k \end{cases}$ is a unit step function)
- Fill in the blank or answer True or False (10%)

 (a) The functions $f(x) = x^2 1$ and $f(x) = x^5$ are orthogonal on $[-\pi, \pi]$.
- (b) To expand f(x) = |x| + 1, $-\pi < x < \pi$, in an appropriate Fourier series we would use a series.
- (c) The Fourier series of $f(x) = \begin{cases} 3, & -\pi, x < 0 \\ 0, & 0 \le x < \pi \end{cases}$ will converge to _____ at x = 0.
- (d) y = 0 is never an eigenfunction of a Sturm-Liouville problem.
- (e) $\lambda = 0$ is never an eigenvalue of a Sturm-Liouville problem.

- 6. Fill in the blank or answer True or False (10%)
 - (a) The sector defined by $-\pi/6 < \arg z < \pi/6$ is a simply connected domain.
 - (b) The value of $\int_C \frac{z-2}{z} dz$ is the same for any path C in the right half-plane Re(z) > 0 between

$$z = 1 + i$$
 and $z = 10 + 8i$.

(c) If
$$f(z) = z^3 + e^z$$
 and C is a contour $z = 8e^{it}$, $0 \le t \le 2\pi$, then

$$\oint_C \frac{f(z)}{(z+\pi i)^3} dz = \underline{\hspace{1cm}}$$

(d)
$$\oint \frac{1}{(z-z_0)(z-z_1)} dz = 0$$
 for every simple closed contour C that enclosed the points z_0 and z_1 .

(e) If
$$|f(z)| \le 2$$
 on $|z| = 3$, then $|\oint_{\mathbb{R}} f(z)dz| \le$
Let $Q(X) = 3x_1^2 + 6x_2^2 + 3x_3^2 - 4x_1x_2 + 8x_1x_3 + 4x_2x_3 = 0$

- (a) Find a unit vector X in \mathbb{R}^3 at which Q(X) is maximized, subject to $X^TX = 1$, and the
 - maximum of Q(X). (Hint: Two eigenvalues of the matrix of the form are 7 and -2.) (10 %)
 - (b) Find the solution set, not just one particular solution, for Part (a). (10 %
- 3. Find a singular value decomposition of $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \\ 1 & -1 \end{bmatrix}$. (15 %)