## 93學年度國立成功大學 電機工程學系 丙組 電路學

武題 共 2 頁 第 1 頁

1. In the circuit of Figure 1, the maximum power that a resistive load can absorb from the circuit is  $P_{AC}$  if the load is connected between nodes A and C, while the maximum power that a resistive load can absorb from the circuit is  $P_{BD}$  if the load is connected between nodes B and D. Please compute the value of  $P_{AC} - P_{BD}$  (20%)



Figure 1

2. After having been closed for a long time, the switches of Figure 2 are opened simultaneously at t=0. Find the voltage  $v_1(t)$  across  $1 \mu F$  capacitor for  $t \ge 0$ . (15%)



Figure 2

3. In Figure 3, at the time when the  $R_I$  is adjusted to be the value for the maximum power transfer, please calculate the power delivered from the 280V source. (15 %)



(背面仍有題目,請繼續作答)

Figure 3

電路學

## 93學年度研究所招生者試 電機工程學系 丙組

試題 共 2 頁

- 4. The load on the linear transformer shown in the following circuit is a capacitance of value C2. The voltage V1 is supplied by a voltage source.
  - (a) Calculate the transfer function V2/V1. (5%)

(b) Define 
$$\varpi_0 = 1/\sqrt{L_2C_2} = 1/\sqrt{L_1C_1}$$
,  $Q_1 = \varpi_0L_1/R_1$ ,  $Q_2 = \varpi L_2/R_2$  and  $k = M/\sqrt{L_1L_2}$ . Write the transfer function in a form that does not contain  $M$ ,  $L_1, L_2$ , or  $C_1$ . (10%)

(c) Define  $k_c$  to be the value of k for which  $|V_2/V_1|$  is a maximum at  $\varpi = \varpi_0$ .

Develop an expression for  $k_c$  in terms of  $Q_1$  and  $Q_2$ . (5%)



5. The following circuit can be used to check for the phase sequence of a balanced three-phase voltage. Assume that the voltmeter is ideal (draws no current) and indicates rms values and that the line-to-line voltage is 208 V. Find the voltmeter reading for an *abc* phase sequence and an *acb* phase sequence. In practice, the voltmeter is often replaced by a small neon lamp and series resistance. The brightness of the lamp is used to indicate the phase sequence. (15%)



6. For following figure,  $V_{an} = 120V \angle 0^{\circ}$ . Compute the readings of each wattmeter and determine the total power of this system. (15%)

