國立成功大學九十四學年度碩士班招生考試試題

編號: E 122 系所:電機工程學系丙組

科目:電路學

- 1. Consider the two stage feedback system shown below.
 - A. Find the driving point impedance Z_{XX} looking into terminal X-X in terms of device parameters R_1 , R_2 , R_3 , K, β (note: it is possible that not all the parameters are used in Z_{XX}). (7%)
 - **B.** Find the gain V_{out}/I_S in terms of device parameters R_1 , R_2 , R_3 , K, β . (8%)

2. You are given several μ A 741 operational amplifiers, $10k\Omega$ and $100k\Omega$ resistors, 10μ F capacitors to build up a feedback control loop with a block diagram shown below. Please construct a circuit diagram with the devices given above to implement the control approach. (note: you should label all the device parameters and input, output ports in your circuit). (20%)

編號: 12

122 系所:電機工程學系丙組

科目:電路學

- 3. A simple one phase AC network with AC source by voltage V_G is connected in series with transmission line represented by an inductor L_T, the transmission line feeds a parallel RL load.
 - A. Draw the circuit diagram. (2%)
 - B. Demonstrate that adding a small parallel capacitor to a parallel RL load raises the load voltage at V_L. (8%)
- 4. The circuit shown below has reached steady state with the switch in position 1. At time t = 0, the switch moves from position 1 to position 2.
 - A. Find the voltage $V_0(t)$ for t > 0. (10%)
 - **B.** Find the current i_A for t > 0. (5%)

編號:

122 系所:電機工程學系丙組

科目:電路學

5. Plot the output voltage waveform, Vout, with the input voltage waveform, Vin, as shown below. (10%)

6. Plot the output voltage waveforms, Vout, of the following figures (a), (b), (c), and (d), respectively. Note: the diode forward voltage V_F=0.7V. (10%)

(背面仍有題目,請繼續作答)

編號: 1

122 系所:電機工程學系丙組

科目:電路學

7. Find the Norton equivalent circuit looking into terminals A and B of the following bridge circuit. DO NOT derive this Norton equivalent circuit from Thevenin equivalent circuit. (10%)

8. Find the currents flowing through R3 and R2, respectively, of the following circuit. (10%)

