
國立成功大學九十四學年度碩士班招生考試試題

編號: 123 系所:電機工程學系丙組

科目:電力系統

- 1. Answer all questions in your answer sheet.
 - A. Define the term 'bolted fault'. (3%)
 - **B.** State the conditions of an electric power system for which the augmented Y_{bus} matrix (i.e. the indefinite Y_{bus} matrix) is singular. (3%)
 - C. Which common model is used for most load buses in a power flow study (choose the best answer): (A) PQ bus (B) PV bus (C) Swing bus (D) TCUL bus. (3%)
 - D. Define the 'frequency sensitive load' and make an example of this kind in your real life.
 (3%)
- 2. The one-line diagram of a three-phase power system is depicted below.

The nameplate ratings for the power equipment are given as follow:

Generator G: 90MVA

11kV

X=15%

Transformer T₁: 100MVA

 $11 \Delta/121Y$ kV

X=10%

Transformer T₂: 90MVA

138Y/69 ∆ kV

X=15%

Transmission Line: $j15\Omega$

Operating condition:

Motor M: 50MVA

60kV

X=15% 0.8 power factor lagging

Load: 30MVA

60kV

0.65 power factor lagging

Select a common base of 100MVA and 121kV

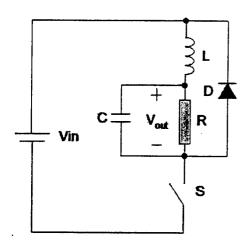
- A. Draw an impedance diagram and label all impedances including Generator, Motor, and Load in per unit. (8%)
- B. Take bus 4 voltage as reference, determine the Motor current, and Load current in actual unit kA. (6%)
- C. Determine the internal emfs in kV for the Generator and Motor. (6%)
- **D.** A capacitor of negligible resistance is connected in parallel with Load to improve the power factor to 0.8 lagging. Determine the capacitance in μ F for the capacitor. (4%)

國立成功大學九十四學年度碩士班招生考試試題

編號: 123 系所:電機工程學系丙組

科目:電力系統

3. An engineering process has inputs $x = (x_1, x_2)^T$ and outputs $y = (y_1, y_2)^T$ and is modeled by the function


$$y_1 = f_1(x_1,x_2) = 0.1x_1x_2 + x_1^2 + 5.5$$

 $y_2 = f_2(x_1,x_2) = x_2^2 - 0.1x_1x_2$

- A. Find the best linear approximation to the process about the operating point $(x_1,x_2) = (1,2)$. (6%)
- **B.** Define $(\Delta x_1, \Delta x_2) = (x_1-1, x_2-2)$ and $(\Delta y_1, \Delta y_2) = (y_1-f_1(1,2), y_2-f_2(1,2))$. From the linear approximation you find in (A), derive the relationship between $(\Delta x_1, \Delta x_2)$ and $(\Delta y_1, \Delta y_2)$ using the linear model (i.e. write the relationship using the Jacobian matrix). (4%)
- C. What do the entries in the Jacobian tell you about controlling the output of the process with the input near $(x_1,x_2) = (1,2)$? (4%)

編號: 123 系所:電機工程學系丙組

科目:電力系統

4. <u>Derive</u> the DC voltage ratio, Vout/Vin, of the CCM DC-DC converter, as shown below. (10%) <u>Plot</u> the current and voltage waveforms of the inductor L. (10%)

5. A 200-kVA, 13,200V/2,200V, 60Hz, single-phase transformer has the following test data:

	Volts	Amps	Watts	Frequency	Volts
Open	2,200	3.1	1550	60	12,800
Circuit					
Short	210	90.9	2500	60	
Circuit					

<u>Determine</u> the parameters of the T-equivalent circuit when referred to the low voltage winding. (20%)

國立成功大學九十四學年度碩士班招生考試試題

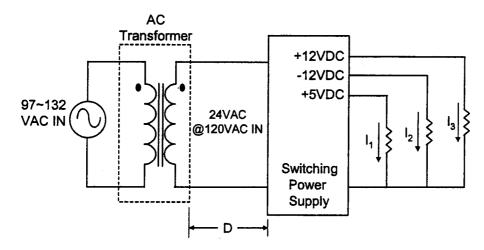
編號: 123 系所:電機工程學系丙組

科目:電力系統

6. A circuit, as shown below, is a typical layout which might be encountered in a micro-processor instrumentation system. The wire used in the connection between the transformer and the switching power supply is #14 gauge with a resistance of 2.5 ohms/1000ft measured at 60 Hz. The distance between the source voltage (97~132 VAC) and the transformer is negligible.

The following data applies:

Vin is between 97 and 132 volts AC at 60Hz.


 $I_1=5.0 \text{ amps } I_2=0.5 \text{ amps}$ $I_3=0.5 \text{ amps}$

Switching power supply efficiency = 75%

Minimum input voltage to switching power supply is 15VAC

Transformer turns ratio can vary by $\pm 5\%$.

<u>Calculate</u> the maximum distance D between the transformer and the switching power supply. (10%)

