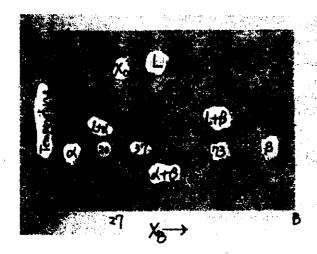
- Given that the width of an energy band is typically 10eV, calculate the following, in per cm³ and per eV units: .(20%)
 - a). The density of states at the center of the band
 - b). The number of states per unit volume within a small energy range kT about the center.
 - c). The density of states at kT above the bottom of the band
 - d). The number of states per unit volume within a small energy range kT to 2 kT from the bottom of the band.. (h=6.626x10⁻³⁴, m_e=9.1x10⁻³¹kg)
- 2. A certain transmitter-type vacuum tube has a cylindrical Th-coated W cathodw, which is 4cm long and 2mm in diameter. Estimate the saturation current if the tube is operated at a temperature of 1600°C, given that the emission constant is $B_e = 3.0 \times 10^4 \text{ A/m}^2 \text{K}^2$ for Th on W ($\phi = 2.6 \text{ eV}$, $k = 1.38 \times 10^{-23}$) (10%)
- 3. For low concentration of Zn in Cu, the diffusion coefficient of Zn has been measured to be 3.67x10⁻¹¹ cm²/s at 1000K and 8.32 x 10⁻¹⁸ cm²/s at 600K. Determine the activation energy for this process and then determine the value of the diffusion coefficient at 450K. (10%)
- 4. Fig.(1) shows a hypothetical binary eutectic phase diagram on which we indicate an alloy of composition 0.27B. Calculate the following quantities (20%)
 - a. The fraction of primary solid that forms under equilibrium cooling at the eutectic temperature.
 - b. The fraction of liquid with the eutectic composition that will transform to two solid phases below the eutectic isotherm
 - c. The amount of α and β that will form from the liquid just below the eutectic isotherm.
 - d. The total amount of phase in the alloy at a temperature just below the eutectic temperature.
- 5.. Which of the following are valid slip systems in an FCC metal crystal (10%)
 - a. (a./2)[111](101)
 - b. (a₀)[110](111)
 - c. (a./2)[101](111)
 - d. (a/2)[101](111)
- 6. Calculate the linear density along [111] in a BCC material. Repeat the calculation for the [110] direction in BCC (10%)

(背面仍有題目,請繼續作答)

國立成功大學九十五學年度碩士班招生考試試題

編號: 7 243 系所:電機工程學系甲組


科目:電子材料衡論

本試題是否可以使用計算機: 口可使用 , 口不可使用

(請命題老師勾選)

- 7. Please explain or define following noun: (20%)
 - a). Eutectic reaction
 - b). Peritectic reaction
 - c). Monotectic reaction
 - d). Electron Effective Mass
 - e). Boltzmann probability function
 - f). Fermi-Dirac function
 - g). Schottky effect
 - h). Frenkel defects
 - i). Schottky defects
 - j). Bragg's law

Fig.(1)

