國立成功大學九十六學年度碩士班招生考試試題

編號: 261 系所:電機工程學系戊組 科目:電儀表學

本試題是否可以使用計算機: ☑可使用 , □不可使用 (請命題老師勾選)

1. (12%) Describe and explain the four basic categories of error.

2. (a). (4%) How does an analog EVM differ from a VOM?

- (b). (3%) What type of **bridge** is best suited for measuring the inductance of high-Q coils?
- (c). (3%) What type of **bridge** is best suited for measuring the power factor of a capacitor?
- 3. (a). (11%) Please draw the block diagram of a <u>period counter</u> and explain it. (b). (5%) If the <u>frequency counter</u> outputs 6389 and time base is 5 kHz, what is the frequency of the input signal.
- 4. (12%) A <u>multirange voltmeter</u> is shown in Fig. 1. Assumed $V_{FSD}=10 \text{ V}$, 1 V, and 100 mV and $I_{FSD}=50 \mu\text{A}$ and $R_m=300 \Omega$ for the PMMC meter, find the multiplier resistor R_1 , R_2 , R_3 .

Fig. 1.

5. (10%) For the <u>series ohmmeter</u> shown in Fig. 2, determine the resistance scale markings at $R_x = 0$, $R_x = R_1$, and $R_x = \infty$. Also, determine the resistance scale markings at 1/3 and 2/3 of full scale.

Fig. 2 A series ohmmeter for electronic instrument.

國立成功大學九十六學年度碩士班招生考試試題

編號: 261 系所:電機工程學系戊組

科目:電儀表學

本試題是否可以使用計算機: ↓□可使用 , □不可使用 (請命題老師勾選)

6. (10%) The Q-meter circuit in Fig. 3 is in resonance when $E = 200 \,\text{mV}$, $R = 3 \,\Omega$, and $X_L = X_C = 95 \,\Omega$. Calculate the coil Q and the voltmeter indication.

Fig. 3 A basic Q meter circuit.

7. (15%) (a) Derive the expressions of the equivalent-series inductance (L_x) and resistance (R_x) of an <u>opposite-angle bridge</u> (Fig. 4)at null. Find the values of L_x and R_x that causes the bridge to null with the following component values: $\omega = 3000 \,\text{rad/s}, \ R_1 = 2 \,\text{k}\Omega, \ R_2 = 10 \,\text{k}\Omega, \ R_3 = 1 \,\text{k}\Omega, \ C_1 = 1 \,\text{\mu}F.$

Fig. 4 Opposite-angle bridge.

8. (15%) Draw graphs to show TDR (Time Domain Reflectometry) measurement results of a (a) series R-C circuit, (b) shunt R-L circuit, and cases for a long cable terminated with (c) 50 ohms, (d) open circuit, (e) short circuit.