編號: 202

國立成功大學九十八學年度碩士班招生考試試題

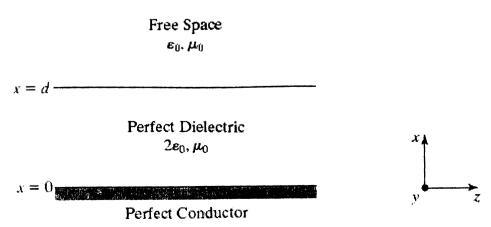
共 2 頁,第/頁

系所組別: 電機工程學系甲組

考試科目: 電磁學

考試日期:0307,節次:2

※ 考生請注意:本試題 ☑可 □不可 使用計算機


- 1. Charge is distributed with density $\rho = \rho_0 (r/a)^2$, where ρ_0 is a constant, in the sphere r < a. Find displacement field **D** everywhere and plot D_r versus r. (15%)
- 2. The electric-field intensity of a uniform plane wave propagating in free space is given by

$$\mathbf{E} = 37.7\cos\left(9\pi \times 10^7 t + 0.3\pi y\right)\mathbf{a}_x \quad \text{V/m}$$

- Find: (a) the frequency; (b) the wavelength; (c) the direction of propagation of the wave; and (d) the associated magnetic-field intensity vector **H**. (15%)
- 3. In a space consisting three different media shown below, the region x < 0 is a perfect conductor, the region 0 < x < d is a perfect dielectric of $\varepsilon = 2\varepsilon_0$ and $\mu = \mu_0$, and the region x > d is the free space. The electric and magnetic fields in the region 0 < x < d are given at a particular instant of time by

$$\mathbf{E} = E_1 \cos \pi x \sin 2\pi z \mathbf{a}_x + E_2 \sin \pi x \cos 2\pi z \mathbf{a}_z$$
$$\mathbf{H} = H_1 \cos \pi x \sin 2\pi z \mathbf{a}_y$$

Find (a) surface charge density and surface current density on the surface x=0 and (b) **E** and **H** for x=d+, that is, immediately adjacent to the x=d plane and on the free-space side, at that instant of time. (20%)

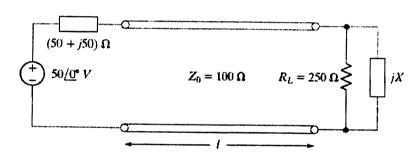
(背面仍有題目、請繼續作答)

編號:

202

國立成功大學九十八學年度碩士班招生考試試題

共 2 頁,第7頁


系所組別: 電機工程學系甲組

考試科目: 電磁學

考試日期:0307,節次:2

※ 考生請注意:本試題 □可 □不可 使用計算機

- 4. Consider a coaxial cylindrical conductors filled with a uniform dielectric medium of permittivity ε between an inner radius a and an outer radius b. Show that the capacitance per unit length of the cylindrical conductors is $2\pi\varepsilon/\ln(b/a)$. (15%)
- 5. In the system shown below, find the value of the reactance X and the minimum value of the electrical length l for which the time-average power delivered to the resistor R_L is a maximum. What are the values of this power and the SWR on the line? (20%)

6. The dimensions of a rectangular cavity resonator with air dielectric are a = 4 cm, b = 2 cm, and d = 4 cm. Find the three lowest frequencies of oscillation and specify the mode(s) of oscillation, TE_{mnl} and TM_{nml} , transverse with respect to the d = 4 cm direction, for each frequency. [Hint: The mode numbers m, n = 0,1,2,..., but not both zero for TE modes, and m, n = 1,2,3,... for TM modes.](15%)

Some formula for reference:

Laplace's equation in cylindrical coordinate system: $\nabla^2 \Phi = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \Phi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \phi^2} + \frac{\partial^2 \Phi}{\partial z^2}$

In free space:
$$c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} = 3 \times 10^8 \text{ m/s}, \quad \eta_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}} \approx 120 \pi \Omega = 377 \Omega$$

$$SWR = \frac{1 + \left|\overline{\Gamma}_R\right|}{1 - \left|\overline{\Gamma}_R\right|}$$