編號: 203

國立成功大學九十八學年度碩士班招生考試試題

共 / 頁,第/頁

系所組別: 電機工程學系乙組

考試科目: 控制系統

考試日期:0307, 節次:2

※ 考生請注意:本試題 ☑可 □不可 使用計算機

- 1. (25%) The unity feedback system of Fig. 1, where $G(s) = \frac{K(s+\alpha)}{(s+\beta)^2}$ is to be designed to meet the following specifications: 5% steady-state error; 10% maximum overshoot; 1sec settling time (±2%). Find K, α , and β .
- 2. (25%) The unity feedback shown in Fig. 1 with $G(s) = \frac{K}{s^2}$ is to be designed for a settling time of 1.667 seconds (±2%) and a 16.3% maximum overshoot. If the compensator zero is placed at -1, find the compensator pole and the system gain.
- 3. (20%, 10%) For the system shown in Fig. 1 with $G(s) = \frac{K(s+4)}{(s-2)(s^2+4s+13)}$, determine the Nyquist plot and apply the Nyquist criterion (a) to determine the values of K (positive and negative) for which the closed-loop system will be stable, and (b) to determine the number of roots in RHP for those values of K for which the closed-loop system is unstable.
- 4. (20%) Please show the theorem. If the n-dimensional state equation in $\dot{\mathbf{x}}_{n\times 1} = \mathbf{A}_{n\times n}\mathbf{x}_{n\times 1} + \mathbf{b}_{n\times 1}\mathbf{u}$ and $\mathbf{y} = \mathbf{C}_{1\times n}\mathbf{x}_{n\times 1}$ is controllable, then by state feedback $u = r \mathbf{k}\mathbf{x}$, where \mathbf{k} is a $1\times n$ real constant vector, the eigenvalues of $\mathbf{A} \mathbf{b}\mathbf{k}$ can arbitrarily be assigned provided that complex conjugate eigenvalues are assigned in pairs.

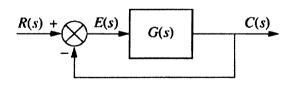


Fig. 1