編號: 214、215、>>8 國立成功大學九十八學年度碩士班招生考試試題 共 3 頁,第/頁

系所組別: 電機工程學系甲、乙、丁、戊組**,微電子工程研究所,電腦與通信工程研究所丙、丁**組

考試科目: 電子學 考試日期: 0307,節次: 1

※ 考生請注意:本試題 ☑可 □不可 使用計算機

- A full-wave rectifier circuit shown in Fig. 1 is to deliver 0.1 A and 15 V (average) to a load R. The ripple voltage is to be no larger than 0.4 V peak-to-peak. The input signal V_I is 120 V (rms) at 60 Hz. Assume diode turn-on voltages of 0.7 V. Determine the required turns ratio (N₁/N₂) and the filter capacitance C value. (11%)
- 2. A CMOS inverter circuit shown in Fig. 2 has the parameters of V_{DD} =5 V, V_{TN} =- V_{TP} =1 V, K_N =100 μ A/V², and K_P =50 μ A/V². Determine the values of noise margins (NM_L, NM_H) and the gate threshold voltage V_M. (22%)
- 3. (a) Explain briefly why BJTs and FETs can amplify ac signals? (6%)
 - (b) Redefine the small-signal parameters of the transistor to absorb the emitter resistance R_E in Fig. 3 (i.e., to find g_{m2} , $r_{\pi 2}$, and r_{o2} in terms of g_{m1} , $r_{\pi 1}$, and r_{o1}). (6%)
 - (c) A single BJT amplifier is needed that has a gain of ~ 0 dB and an input resistance of 25 M Ω with a load resistance of 25 k Ω . What is the preferred choice of amplifier configuration? Explain why you made this selection. (4%)
- 4. (a) Derive i_{out} and R_{out} for the circuit shown in Fig. 4. Assume the small-signal parameters of the MOSFET are g_m and r_o . (8%)
 - (b) The MOSFETs in the circuit of Fig. 5 are matched, having $k_n'(W/L)_1 = k_p'(W/L)_2 = 1.5 \text{ mA/V}^2$ and $|V_t| = 0.5 \text{ V}$. For G and D open, find the drain currents I_{DI} and I_{D2} . For $r_o = \infty$, what is the voltage gain of the amplifier from G to D? (10%)

(背面仍有題目,請繼續作答)

編號: 214、>15、2>8 國立成功大學九十八學年度碩士班招生考試試題 共 〉 頁,第) 頁

系所組別: 電機工程學系甲、乙、丁、戊組,微電子工程研究所,電腦與通信工程研究所內、丁組

考試科目: 電子學 考試日期: 0307,節次: 1

※ 考生請注意:本試題 ☑可 □不可 使用計算機

5. Consider the circuit as shown in Fig. 6. The circuit is biased with $V_{cc} = 12 \text{ V}$, and the load resistance is $R_L = 75 \Omega$.

The device parameters are:

$$I_{SD} = 5 \times 10^{-13} \text{ A for } D_1 \text{ and } D_2,$$

$$I_{SQ}\!=2\!\times\!10^{\text{--}13}\,A$$
 , $\beta_{n}\!=\beta_{p}\!=60$ for Q_{n} and $Q_{p}.$

- (a) Neglecting base currents, determine the required value of I_{Bias} such that the quiescent currents in Q_n and Q_p are $I_{CQ} = 5$ mA. (6%)
- (b) Find i_{cn} , i_{cp} , V_{BEn} , V_{EBp} , and I_D when $V_0=2$ V. (8 %)
- (c) What is the power conversion efficiency for this circuit when the output is a sinusoid and the peak output voltage reaches 80 percent of V_{cc} ? (8%)
- 6. Consider the phase-shift oscillator shown in Fig. 7, with parameters C = 100 pF and $R = 10 \text{ K}\Omega$.
 - (a) Determine the frequency of oscillation. (6%)
 - (b) Find the minimum required value of R₂ for sustaining oscillation. (5%)

編號: 214 、 > 15. > 8 國立成功大學九十八學年度碩士班招生考試試題 共 3 頁 , 第 3 頁

系所組別: 電機工程學系甲、乙、丁、戊組,微電子工程研究所,電腦與通信工程研究所丙、丁組

考試科目: 電子學 考試日期: 0307·節次:1

※ 考生請注意:本試題 ☑可 □不可 使用計算機

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

 $\begin{bmatrix} C & C & C & R & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ &$

Fig. 7