編號:

196, 209

國立成功大學九十九學年度碩士班招生考試試題

共 2頁,第1頁

系所組別: 電機工程學系丁組,電腦與通信工程研究所

考試科目: 離散數學

考試日期:0307, 節次:3

※ 考生請注意:本試題 □可 ☑不可 使用計算機

Problem 1. (15 pt)

// The recursive algorithm finds the largest and smallest elements in a sequence.

Input: $s_i, ..., s_j, i$ and j

Outpt: large (the largest element in the sequence), small (the smallest element

in the sequence)

1. large_small
$$(s, i, j, large, small)$$

2. if $(i = j)$ {

11. large = large_left

3. large = s_i

12. else

4. $small = s_i$

13. large = large_right

5. return

14 if $(small_left > small_right)$

6. }

15 $small = small_right$

7. $m = \lfloor (i+j)/2 \rfloor$

16 else

8. large_small $(s, i, m, large_left, small_left)$

17 $small = small_left$

9. large_small $(s, m+1, j, large_right, small_right)$

18 }

Let b_n be the number of comparisons (lines 10 and 14) required for an input of size n. Please answer the following questions.

- a. (5pt) Establish the recurrence relation of b_n .
- **b**. (4**pt**) Find b_1 and b_2 .
- c. (6 pt) Solve the recurrence relation in case n is a power of 2 to obtain

$$b_n = 2n - 2, \qquad n = 1, 2, 4, \dots +$$

Problem 2. (10 pt)

Prove

$$n(1+x)^{n-1} = \sum_{k=1}^{n} C(n,k)kx^{k-1}$$

Problem 3. (10 pt) Figure 1 gives a graph with six nodes and thirteen edges. Each edge is associated with a weight. Please answer the questions in the following:

Figure 1. A graph.

(背面仍有題目,請繼續作答)

編號:

196, 209

國立成功大學九十九學年度碩士班招生考試試題

共 2 頁,第2頁

系所組別: 電機工程學系丁組,電腦與通信工程研究所

考試科目: 離散數學

考試日期:0307, 節次:3

※ 考生請注意:本試題 □可 □ □ 不可 使用計算機

a. (2 pt) Decide whether the graph has an Euler cycle. If the graph has an Euler cycle, exhibit one; otherwise, briefly explain why it does not.

b. (3 **pt**) Determine whether the graph is planar. If the graph is planar, redraw it so that no edges cross; otherwise, show why it is not planar.

c.(5 pt) Find a minimal spanning tree using Prim's algorithm (suppose the source node is a).

Problem 4. (15 pt) Given a transport network, the source is a and the sink is z.

Figure 2. Edges are labeled x, y to indicate capacity x and flow y

- a. (3 pt) Fill in the missing edge flows so that the result is a flow in the network.
- b. (10 pt) Find the maximum flow and show the resulting edge flows.
- c. (2 pt) Find the minimum cut cut(P, P') by showing the nodes in P.

Problem 5. (10 pt) $A=B=\{1,2,3\}$; $R=\{(1,1), (1,2), (2,3), (3,1)\}$; $S=\{(2,1), (3,1), (3,2), (3,3)\}$. Let R and S be relations from a set A to a set B. Compute

(a) (5%) \overline{R} , (b) (5%) S^{-1}

Problem 6. (10 pt) A= \mathbb{R} and \leq denotes the usual partial order B= $\{x \mid x \text{ is a real number and } 5 \leq x \leq 6\}$. Find, if it exists,

(a) (5%) all lower bounds of B; (b) (5%) the least upper bound of B.

Problem 7. (10 pt) Using Karnaugh-map to simplify the Boolean function F=A'B'C'+B'CD'+A'BC'D'+AB'C'

Problem 8. (10 pt) Simplify the following Boolean function into product of sums form $F(A,B,C,D)=\Sigma(0,1,2,5,8,9,10)$

Problem 9. (10 pt) Consider the encoding function f defined below. How many errors will f detect?

f(000)=00000000
f(001)=10111000
f(010)=00101101
f(011)=10010101
f(100)=10100100
f(101)=10001001
f(110)=00011100
f(111)=00110001