系所組別：製造資訊與系統研究所甲組

考試科目：工程數學

Problem 1 （ 15 points）

As sketched above，a hemispherical tank is to be filled with water through an inlet in its bottom． Suppose that the radius of the tank is R ，and that water is pumped in at a volumetric flowrate of Q ． Also，as the tank fills，it loses water through evaporation at a volumetric rate that is proportional to the water surface area A with a proportionality constant k（i．e，the evaporation rate is $k A$ ）． Note that $R^{2}=(R-h)^{2}+r^{2}$ ，and so we can write $A=\pi r^{2}=\pi h(2 R-h)$ ．Moreover，the volume of water shown in the sketch is $V=\pi h^{2}(R-h / 3)$ ．
（a）Show that

$$
\pi h(2 R-h) \frac{d h}{d t}=Q-\pi k h(2 R-h)
$$

（b）Consider now the special case that $Q=k \cdot \pi R^{2}$ ，and solve the resulting differential equation． Assume that the tank initially is empty．

Problem 2 （10 points）
（a）Given that $y=\sin x$ is a solution of

$$
\frac{d^{4} y}{d x^{4}}+2 \frac{d^{3} y}{d x^{3}}+11 \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+10 y=0
$$

find the general solution of the differential equation．
（b）Find a linear second－order differential equation with constant coefficients for which $y_{1}=1$ and $y_{2}=e^{-x}$ are solutions of the associated homogeneous equation and $y_{p}=x^{2} / 2-x$ is a particular solution of the nonhomogeneous equation．

Problem 3 （15 points）
Use Laplace transform to solve the following initial－value problem：

$$
\frac{d^{2} x}{d t^{2}}+3 \frac{d y}{d t}+3 y=0, \quad \frac{d^{2} x}{d t^{2}}+3 y=t e^{-t}
$$

with $x(0)=y(0)=0$ and $\frac{d x}{d t}(0)=2$ ．

Problem 4 （ 15 points）

In his book Liber Abbaci，published in 1202，Leonardo Fibonacci of Pisa speculated on the repro－ duction of rabbits：

How many pairs of rabbits will be produced in a year beginning with a single pair，if every month each pair bears a new pair which become productive from the second month on？

The answer to his question is contained in a sequence known as a Fibonacci sequence，which can be defined recursively by a second－order difference equation

$$
x_{n}=x_{n-2}+x_{n-1}, \quad n=2,3, \ldots,
$$

with $x_{0}=1$ and $x_{1}=1$ ．To understand this equation，think of x_{n-2} as the number of adult （productive）pairs after the（ $n-2$ ）－th months．As each adult pair bears a new pair one month later，there are x_{n-2} baby pairs－and x_{n-1} adult pairs by definition－after the（ $n-1$ ）－th month． One more month later，i．e．，after the n－th month，such baby pairs become adults as well，and so there are $x_{n-2}+x_{n-1}$ adult pairs in total，which equals x_{n} by definition；hence the above equation．
（a）Now，if we let $y_{n-1}=x_{n-2}$ ，then $y_{n}=x_{n-1}$ ，and the difference equation above can be written as a system of first－order difference equations

$$
x_{n}=x_{n-1}+y_{n-1}, \quad y_{n}=x_{n-1} .
$$

Write this system in matrix form $\mathbf{X}_{n}=\mathbf{A} \mathbf{X}_{n-1}, n=2,3, \ldots$ ，where $\mathbf{X}_{n}=\left(x_{n}, y_{n}\right)^{T}$ and \mathbf{A} is a 2×2 coefficient matrix．
（b）Show that

$$
\mathbf{A}^{m}=\frac{1}{\lambda_{2}-\lambda_{1}}\left(\begin{array}{cc}
\lambda_{2}^{m+1}-\lambda_{1}^{m+1} & \lambda_{2}^{m}-\lambda_{1}^{m} \\
\lambda_{2}^{m}-\lambda_{1}^{m} & \lambda_{2}^{m-1}-\lambda_{1}^{m-1}
\end{array}\right),
$$

where $\lambda_{1,2}$ are the distinct eigenvalues of \mathbf{A} ．
（c）Use the result in part（a）to show $\mathbf{X}_{n}=\mathbf{A}^{n-1} \mathbf{X}_{1}$ ．
（d）Use the results in parts（b）and（c）to find the number of adult pairs，baby pairs，and total pairs of rabbits after the twelfth month．

Problem 5 （10 points）

The electric field at a point $P(x, y, z)$ due to a point charge q located at the origin is given by the inverse square field

$$
\mathbf{E}=q \frac{\mathbf{r}}{|\mathbf{r}|^{3}},
$$

where $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ and $|\mathbf{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$ ．
（a）Suppose S is a closed surface，S_{a} is a sphere $x^{2}+y^{2}+z^{2}=a^{2}$ lying completely within S ，and D is the region bounded by S and S_{a} ．Show that the outward flux of E for the region D is zero．
（b）Use the result of part（a）to prove Gauss＇law：

$$
\iint_{S}(\mathbf{E} \cdot \mathbf{n}) d S=4 \pi q
$$

that is，the outward flux of the electric field \mathbf{E} through any closed surface containing the origin is $4 \pi q$ ．

Problem 6 （ 25 points）
Solve the boundary－value problem

$$
\begin{aligned}
& k \frac{\partial^{2} u}{\partial x^{2}}-h u=\frac{\partial u}{\partial t}, \quad 0<x<\pi, t>0, \\
& u(0, t)=0, \quad u(\pi, t)=u_{0}, \quad t>0, \\
& u(x, 0)=0, \quad 0<x<\pi .
\end{aligned}
$$

The above partial differential equation is a form of the heat equation when heat is lost by convection from the lateral surface of a thin rod into a medium at zero temperature．

Problem 7 （10 points）
Evaluate

$$
\int_{C} \bar{z} d z
$$

where C is given by $x=3 t, y=t^{2},-1 \leq t \leq 4$ ．

