編號: 218

國立成功大學一〇一學年度碩士班招生考試試題

系所組別: 製造資訊與系統研究所丙組

考試科目: 物理

考試日期:0226,節次:2

1. (40 pts) Sir Isaac Newton published the law of gravitation in 1967.

$$F_g = \frac{Gm_1m_2}{r^2},$$

where F_g is the magnitude of the gravitational force on either particle, m_1 and m_2 are their masses, r is the distance between them, and G is a fundamental physical constant called the gravitational constant. Answer the following questions. (a) (20 pts) Propose a method to determine the mass of the Earth. (b) (20 pts) Give the potential error sources of your method.

- 2. (30 pts) Give a situation, phenomena, or reported experimental results that reveal the need of quantum theories.
- 3. (30 pts) Collectively, Maxwell's equations consist of the following four equations:

Gauss' law for electricit	y $\oint \vec{E} \cdot d\vec{A} = q_{enc} / \varepsilon_0$, or $\nabla \cdot \vec{E} = \rho$,
Gauss' law for magnetis	m $\oint \vec{B} \cdot d\vec{A} = 0$, or $\nabla \cdot \vec{B} = 0$,
Faraday's law	$\oint \vec{E} \cdot d\vec{s} = -d\Phi_B / dt$, or $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$, and
Ampere-Maxwell law	$\oint \vec{B} \cdot d\vec{s} = \mu_0 (\varepsilon_0 d\Phi_E / dt + i_{inc}), \text{ or } \nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}.$

Maxwell's equations, while supplemented by the Lorentz force equation $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$ and the conservation of charge, describe a lot of the electromagnetic phenomena we encounter.

Let c be the speed of electromagnetic waves in vacuum. Then,

$$c=\frac{1}{\sqrt{\mu_0\varepsilon_0}}.$$

Derive the above formula.