編號： 218

1．（40 pts）Sir Isaac Newton published the law of gravitation in 1967.

$$
F_{g}=\frac{G m_{1} m_{2}}{r^{2}}
$$

where F_{g} is the magnitude of the gravitational force on either particle，m_{1} and m_{2} are their masses，r is the distance between them，and G is a fundamental physical constant called the gravitational constant．Answer the following questions．
（a）（20 pts）Propose a method to determine the mass of the Earth．
（b）（20 pts）Give the potential error sources of your method．
2．（ 30 pts ）Give a situation，phenomena，or reported experimental results that reveal the need of quantum theories．

3．（ 30 pts）Collectively，Maxwell＇s equations consist of the following four equations：
Gauss＇law for electricity

$$
\begin{aligned}
& \oint \bar{E} \cdot d \vec{A}=q_{e n c} / \varepsilon_{0}, \text { or } \nabla \cdot \vec{E}=\rho, \\
& \oint \bar{B} \cdot d \bar{A}=0, \text { or } \nabla \cdot \vec{B}=0,
\end{aligned}
$$

Gauss＇law for magnetism
Faraday＇s law

$$
\oint \bar{E} \cdot d \bar{s}=-d \Phi_{B} / d t, \text { or } \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}, \text { and }
$$

Ampere－Maxwell law $\oint \vec{B} \cdot d \vec{s}=\mu_{0}\left(\varepsilon_{0} d \Phi_{E} / d t+i_{m c}\right)$ ，or $\nabla \times \vec{B}=\mu_{0} \vec{J}+\mu_{0} \varepsilon_{0} \frac{\partial \vec{E}}{\partial t}$ ．
Maxwell＇s equations，while supplemented by the Lorentz force equation $\bar{F}=q(\bar{E}+\bar{v} \times \bar{B})$ and the conservation of charge，describe a lot of the electromagnetic phenomena we encounter．

Let c be the speed of electromagnetic waves in vacuum．Then，

$$
c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}} .
$$

Derive the above formula．

