國立成功大學 102 學年度碩士班招生考試試題

共4頁,第1頁

系所組別:製造資訊與系統研究所乙組

考試科目:統計方法

編號: 211

考試日期:0223,節次:2

※ 考生請注意:本試題不可使用計算機;單選題、滿分100分、每題4分、答錯倒扣1分。

- 1. The probability that a continuous random variable takes any specific value
 - A) is equal to zero
 - B) is at least 0.5
 - C) depends on the probability density function
 - D) is very close to 1.0
- 2. A simple random sample of 100 observations was taken from a large population. The sample mean and the standard deviation were determined to be 80 and 12 respectively. The standard error of the mean is
 - A) 1.20
 - B) 0.12
 - C) 8.00
 - D) 0.80
- 3. In point estimation
 - A) data from the population is used to estimate the population parameter
 - B) data from the sample is used to estimate the population parameter
 - C) data from the sample is used to estimate the sample statistic
 - D) the mean of the population equals the mean of the sample
- 4. If we consider the simple random sampling process as an experiment, the sample mean is
 - A) always zero
 - B) always smaller than the population mean
 - C) a random variable
 - D) exactly equal to the population mean
- 5. As the number of degrees of freedom for a t distribution increases, the difference between the t distribution and the standard normal distribution
 - A) becomes larger
 - B) becomes smaller
 - C) stays the same
 - D) None of these alternatives is correct.

6. For the interval estimation of μ when σ is known and the sample is large, the proper distribution to use is

- A) the normal distribution
- B) the t distribution with n degrees of freedom
- C) the t distribution with n + 1 degrees of freedom
- D) the t distribution with n + 2 degrees of freedom
- 7. For which of the following values of P is the value of P(1 P) maximized?
 - A) P = 0.99
 - B) P = 0.90
 - C) P = 0.01
 - D) P = 0.50
- 8. After computing a confidence interval, the user believes the results are meaningless because the width of the interval is too large. Which one of the following is the best recommendation?
 - A) Increase the level of confidence for the interval.
 - B) Decrease the sample size.
 - C) Increase the sample size.
 - D) Reduce the population variance.

(背面仍有題目,請繼續作答)

編號:	211 國立成功大學 102 學年度碩士班招生考試試題	共4頁,第2頁
系所組	別:製造資訊與系統研究所乙組	,
考試科	·目:統計方法	考試日期:0223,節次:2
※考	主請注意:本試題不可使用計算機;單選題、滿分100分、每題4分	、答錯倒扣1分。
9.	In hypothesis testing,	
	A) the smaller the Type I error, the smaller the Type II error will be	
	C) Type II error will not be effected by Type I error	
	D) the sum of Type I and Type II errors must equal to 1	
10.	The <i>p</i> -value is a probability that measures the support (or lack of support) for the	e
	A) null hypothesis	
	C) either the null or the alternative hypothesis	
	D) sample statistic	
11.	In hypothesis testing if the null hypothesis is rejected,	
	 A) no conclusions can be drawn from the test B) the alternative hypothesis is true 	
	C) the data must have been accumulated incorrectly	
	D) the sample size has been too small	
12.	The power curve provides the probability of	
-	 A) correctly accepting the null hypothesis B) incorrectly accepting the null hypothesis 	
	C) correctly rejecting the alternative hypothesis	
	D) correctly rejecting the null hypothesis	
13.	If we are interested in testing whether the proportion of items in population 1 is	larger than the proportion of
	A) null hypothesis should state $P_1 - P_2 < 0$	
	B) null hypothesis should state $P_1 - P_2 \ge 0$	
	C) alternative hypothesis should state $P_1 - P_2 > 0$	
	D) alternative hypothesis should state $P_1 - P_2 < 0$	
14.	The standard error of $x_1 - x_2$ is the	
	A) variance of $x_1 - x_2$	
	B) variance of the sampling distribution of $x_1 - x_2$	
	C) standard deviation of the sampling distribution of $x_1 - x_2$	
1.5	D) difference between the two means	1
15.	We are interested in testing whether the variance of a population is significantly hypothesis for this test is	less than 1.44. The null
	A) $H_0: \sigma^2 < 1.44$	
	B) $H_0: s^2 \ge 1.44$	
	C) $H_0: \sigma \le 1.20$	
	D) $H_0: \sigma^2 \ge 1.44$	1 Company to the second many lations
16.	The sampling distribution of the ratio of independent sample variances extracte with equal variances is the	a from two normal populations
	A) chi-square distribution	
	B) normal distribution	
	C) Z distribution	

論號:	211 國立成	切大学 102 年	学牛皮頓士址指	于一方武武区		开 4月	
系所經	组別:製造資訊與系統研究	充所乙組					
考試7	科目:統計方法					考試日期:022	3,節次
※ 考	生請注意:本試題不可使	用計算機;	單選題、滿分 1	100分、每題	4分、答錯	锢扣1 分。	
17.	Which of the following has a	chi-square dist	tribution?	-			
	A) $(n - 1)\sigma^2/S^2$	om square als					
	B) $(n-2)\sigma^2/S^2$						
	C) $(n-1)S/\sigma$ D) $(n-1)S^2/\sigma^2$						
19	An important application of	the chi cavera	distribution is				
10.	A) making inferences about	t a single popul	lation variance				
	B) testing for goodness of	fit					
	C) testing for the independ	ence of two var	riables				
19.	An ANOVA procedure is an	nlied to data of	otained from 6 sa	mples where eac	ch sample co	ontains 20	
19.	observations. The degrees of	freedom for th	e critical value o	of F are	in oumpro es		
	A) 6 numerator and 20 dem	ominator degre	es of freedom				
	C) 5 numerator and 20 den	nominator degre	rees of freedom				
	D) 6 numerator and 20 den	ominator degre	es of freedom				
20.	In order to determine wheth	er or not the me	ans of two popul	ations are equal	,		
	 A) a t test must be perform B) an analysis of variance 	ed must be perfori	med				
			1 6	ad a			
	C) either a t test or an anal	ysis of variance	e can be performe	a			
	C) either a t test or an analD) a chi-square test must b	ysis of variance e performed	e can be performe	zu			
	 C) either a t test or an anal D) a chi-square test must b Exhibit A Part of an ANOVA table is a 	shown below.	Degrées	Moon			
	 C) either a t test or an anal D) a chi-square test must b Exhibit A Part of an ANOVA table is a Source of Variation 	ysis of variance e performed shown below. Sum of Squares	Degrees of Freedom	Mean Square	F		
	 C) either a t test or an anal D) a chi-square test must b Exhibit A Part of an ANOVA table is a Source of Variation Between Treatments 	ysis of variance e performed shown below. Sum of Squares 64	Degrées of Freedom	Mean Square	F 8		
	 C) either a t test or an anal D) a chi-square test must b Exhibit A Part of an ANOVA table is a Source of Variation Between Treatments Within Treatments Error 	ysis of variance e performed shown below. Sum of Squares 64	Degrees of Freedom	Mean Square 2	F 8		
	 C) either a t test or an anal D) a chi-square test must b Exhibit A Part of an ANOVA table is a Source of Variation Between Treatments Within Treatments Error Total 	ysis of variance e performed shown below. Sum of Squares 64 100	Degrees of Freedom	Mean Square 2	F 8		
	 C) either a t test or an anal D) a chi-square test must b Exhibit A Part of an ANOVA table is a Source of Variation Between Treatments Within Treatments Error Total 	ysis of variance e performed shown below. Sum of Squares 64 100	Degrees of Freedom	Mean Square 2	F 8		
21.	 C) either a t test or an anal D) a chi-square test must b Exhibit A Part of an ANOVA table is a Source of Variation Between Treatments Within Treatments Error Total Refer to Exhibit A. The num A) 18 	ysis of variance e performed shown below. Sum of Squares 64 100 aber of degrees	Degrees of Freedom	Mean Square 2 esponding to bet	F 8 ween treatmo	ents is	
21.	 C) either a t test or an anal D) a chi-square test must b Exhibit A Part of an ANOVA table is a Source of Variation Between Treatments Within Treatments Error Total Refer to Exhibit A. The num A) 18 B) 2 	ysis of variance e performed shown below. Sum of Squares 64 100 nber of degrees	Degrees of Freedom	Mean Square 2 esponding to bet	F 8 ween treatmo	ents is	
21.	 C) either a t test or an anal D) a chi-square test must b Exhibit A Part of an ANOVA table is a Source of Variation Between Treatments Within Treatments Error Total Refer to Exhibit A. The num A) 18 B) 2 C) 4 D) 2 	ysis of variance e performed shown below. Sum of Squares 64 100 nber of degrees	Degrées of Freedom	Mean Square 2 esponding to bet	F 8 ween treatme	ents is	
21.	 C) either a t test or an anal D) a chi-square test must b Exhibit A Part of an ANOVA table is a Source of Variation Between Treatments Within Treatments Error Total Refer to Exhibit A. The num A) 18 B) 2 C) 4 D) 3 Refer to Exhibit A. The num 	ysis of variance e performed shown below. Sum of Squares 64 100 aber of degrees	Degrees of Freedom corre	Mean Square 2 esponding to bet	F 8 ween treatmen	ents is	
21.	 C) either a t test or an anal D) a chi-square test must b Exhibit A Part of an ANOVA table is a Source of Variation Between Treatments Within Treatments Error Total Refer to Exhibit A. The num A) 18 B) 2 C) 4 D) 3 Refer to Exhibit A. The num A) 22 	ysis of variance e performed shown below. Sum of Squares 64 100 aber of degrees	Degrees of Freedom corre	Mean Square 2 esponding to bet	F 8 ween treatmen	ents is	
21.	 C) either a t test or an anal D) a chi-square test must b Exhibit A Part of an ANOVA table is a Source of Variation Between Treatments Within Treatments Error Total Refer to Exhibit A. The num A) 18 B) 2 C) 4 D) 3 Refer to Exhibit A. The num A) 22 B) 4 	ysis of variance e performed shown below. Sum of Squares 64 100 aber of degrees	Degrées of Freedom corre	Mean Square 2 esponding to bet	F 8 ween treatmen	ents is	
21. 22.	 C) either a t test or an anal D) a chi-square test must b Exhibit A Part of an ANOVA table is a Source of Variation Between Treatments Within Treatments Error Total Refer to Exhibit A. The num A) 18 B) 2 C) 4 D) 3 Refer to Exhibit A. The num A) 22 B) 4 C) 5 D) 18 	ysis of variance e performed shown below. Sum of Squares 64 100 aber of degrees	Degrées of Freedom of freedom corre	Mean Square 2 esponding to bet	F 8 ween treatmen	ents is	
21. 22.	 C) either a t test or an anal D) a chi-square test must b Exhibit A Part of an ANOVA table is a Source of Variation Between Treatments Within Treatments Error Total Refer to Exhibit A. The num A) 18 B) 2 C) 4 D) 3 Refer to Exhibit A. The num A) 22 B) 4 C) 5 D) 18 Refer to Exhibit A. The measurement 	ysis of variance e performed shown below. Sum of Squares 64 100 aber of degrees an square betwee	Degrees of Freedom of freedom corre of freedom corre	Mean Square 2 esponding to bet esponding to wit	F 8 ween treatmen	ents is	
21. 22. 23.	 C) either a t test or an anal D) a chi-square test must b Exhibit A Part of an ANOVA table is a Source of Variation Between Treatments Within Treatments Error Total Refer to Exhibit A. The num A) 18 B) 2 C) 4 D) 3 Refer to Exhibit A. The num A) 22 B) 4 C) 5 D) 18 Refer to Exhibit A. The mea A) 36 	ysis of variance e performed shown below. Sum of Squares 64 100 aber of degrees an square betwee	Degrées of Freedom of freedom corre of freedom corre	Mean Square 2 esponding to bet esponding to wit	F 8 ween treatmen	ents is	
21. 22. 23.	 C) either a t test or an anal D) a chi-square test must b Exhibit A Part of an ANOVA table is a Source of Variation Between Treatments Within Treatments Error Total Refer to Exhibit A. The num A) 18 B) 2 C) 4 D) 3 Refer to Exhibit A. The num A) 22 B) 4 C) 5 D) 18 Refer to Exhibit A. The meat A) 36 B) 16 C) 64 	ysis of variance e performed shown below. Sum of Squares 64 100 aber of degrees an square betwee	Degrées of Freedom of freedom corre of freedom corre	Mean Square 2 esponding to bet esponding to wit	F 8 ween treatmen	ents is	
21. 22. 23.	 C) either a t test or an anal D) a chi-square test must b Exhibit A Part of an ANOVA table is a Source of Variation Between Treatments Within Treatments Error Total Refer to Exhibit A. The num A) 18 B) 2 C) 4 D) 3 Refer to Exhibit A. The num A) 22 B) 4 C) 5 D) 18 Refer to Exhibit A. The meat A) 36 B) 16 C) 64 D) 15 	ysis of variance e performed shown below. Sum of Squares 64 100 aber of degrees an square betwee	Degrees of Freedom of freedom corre of freedom corre	Mean Square 2 esponding to bet esponding to wit	F 8 ween treatmen	ents is	
21. 22. 23.	 C) either a t test or an anal D) a chi-square test must b Exhibit A Part of an ANOVA table is a Source of Variation Between Treatments Within Treatments Error Total Refer to Exhibit A. The num A) 18 B) 2 C) 4 D) 3 Refer to Exhibit A. The num A) 22 B) 4 C) 5 D) 18 Refer to Exhibit A. The meat A) 36 B) 16 C) 64 D) 15 	ysis of variance e performed shown below. Sum of Squares 64 100 aber of degrees an square betwee	Degrées of Freedom of freedom corre of freedom corre een treatments (M	Mean Square 2 esponding to bet esponding to wit (STR) is 告 继 續 作 交	F 8 ween treatmen	ents is	

國立成功大學 102 學年度碩士班招生考試試題

共 4-頁,第4頁

考試日期:0223,節次:2

系所組別:製造資訊與系統研究所乙組

考試科目:統計方法

編號: 211

※ 考生請注意:本試題不可使用計算機;單選題、滿分100分、每題4分、答錯倒扣1分。

- 24. In regression analysis, which of the following is **not** a required assumption about the error term ε ?
 - A) The expected value of the error term is one.
 - B) The variance of the error term is the same for all values of X.
 - C) The values of the error term are independent.
 - D) The error term is normally distributed.

25. In a regression analysis, the variable that is being predicted

- A) must have the same units as the variable doing the predicting
- B) is the independent variable
- C) is the dependent variable
- D) usually is denoted by x