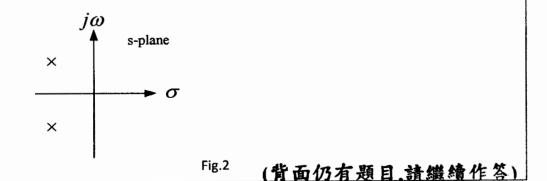
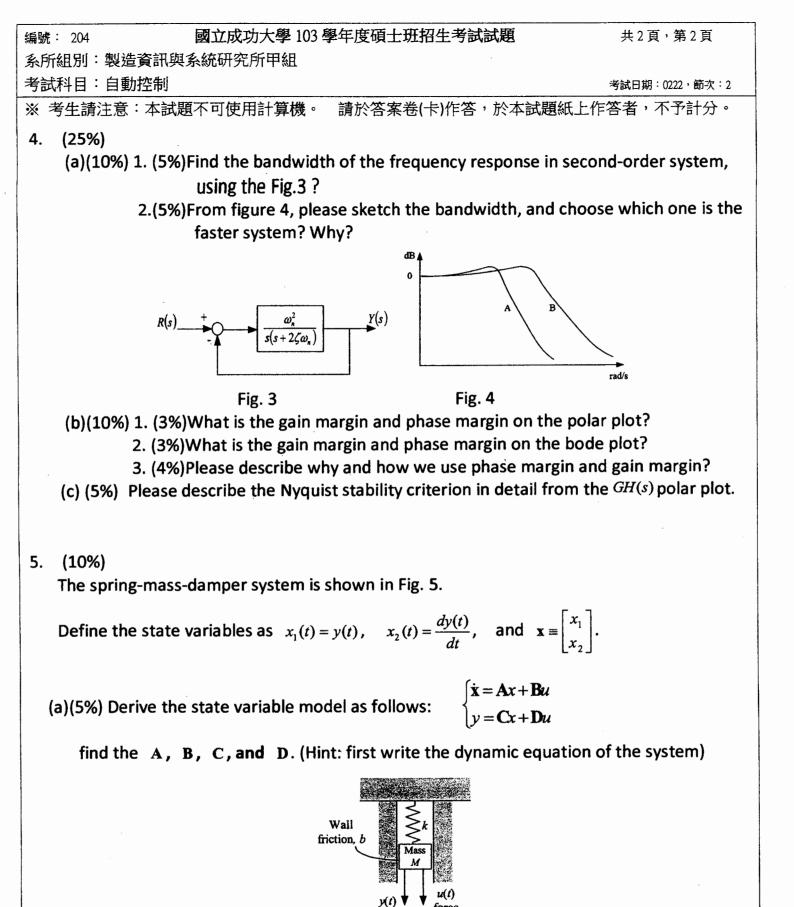

編號: 204	國立成功大學 103 學	年度碩士班招生考試試題	共2頁,第1頁
系所組別:製	造資訊與系統研究所甲組		
考試科目:自	動控制		考試日期:0222,節次:2
※ 考生請注意	意:本試題不可使用計算機。	請於答案卷(卡)作答,於本試題	〔 紙上作答者,不予計分。
1. (25%)			
(a) (50) places compare the the four characteristics of the closed loop system			

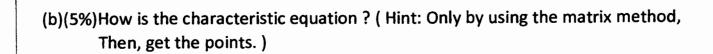
- (a) (5%)Please explain describe the four characteristics of the closed loop system.
- (b) (5%)Please explain the meaning of the Mason's gain formula ?
- (c) (5%)Please explain the steady-state error E(s) from Laplace transform ?
- (d) (5%)Please explain the meaning of the transfer function of a closed system?
- (e) (5%)Please use a block diagram eqn. to explain the meaning of the sensitivity S_G^T , for large or small value is better? assume G is the parameter variation and T is the transfer function.

2. (15%)

An electromechanical open-loop control system is shown in Fig.1. The generator, driven at a constant speed, provides the field voltage for the motor. The motor has an inertia J_m and bearing friction b_m . determine the transfer function $\theta_L(s)/V_f(s)$.




3. (25%)


- (a) (5%) Please explain the optimal control error performance index ITAE?
- (b) (5%) If the characteristic equation is

 $1+G(s) = a_n \cdot S^n + a_{n-1} \cdot S^{n-1} + a_{n-2} \cdot S^{n-2} + \cdots + a_1 \cdot S + a_0 = 0$, Please describe the Routh-Hurwitz criterion of the system?

- (c) (5%)Please explain the root locus, ends at the infinity or at the zero (both are required to be answered, only one answer, you can only get 2%) ?
- (d) (5%)Why the poles must be in the left half s plane?
- (e) (5%)Please mark the damping ratio ξ and natural frequency ω_n of a second order system; if the two poles locate on the s-plane, as Fig.2 shows.

force

Fig. 5