國立成功大學 111學年度碩士班招生考試試題

編 號: 193

系 所:製造資訊與系統研究所

科 目: 自動控制

日 期: 0219

節 次:第2節

備 註:不可使用計算機

國立成功大學 111 學年度碩士班招生考試試題

系 所:製造資訊與系統研究所

考試科目:自動控制

考試日期:0219,節次:2

第1頁,共3頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

題一:

编號: 193

The schematic diagram of a steel-rolling process is shown in Fig. 1. The steel plate is fed through the rollers at a constant speed of V ft/s. The distance between the rollers and the point where the thickness is measured is d ft. The rotary displacement of the motor, $\theta_m(t)$, is converted to the linear displacement y(t) by the gear box and linear-actuator combination $y(t) = n\theta_m(t)$, where n is a positive constant in ft/rad. The equivalent inertia of the load that is reflected to the motor shaft is J_L .

The load friction torque (coulomb friction) T_L is assumed to be zero.

(a) Please draw a functional block diagram for the system.

(10%)

(b) Please derive the forward-path transfer function Y(s)/E(s) and the closed-loop transfer function Y(s)/E(s). (15%)

Hint:

 $i_a = \text{armature current}$ $R_a = \text{armature}$

 $L_a = armature inductance$

 $e_b = \text{back emf}$ $T_L = \text{load torque}$

 ω_m = rotor angular velocity

 $J_m = \text{rotor inertia}$

 B_m = visous-friction coefficient

 $R_a = armature resistance$

 e_a = applied voltage

 $K_b = \text{back-emf constant}$

 $T_m = motor torque$

 $\theta_m = \text{rotor displacement}$

 K_i = torque constant

$$\frac{d^{2}\theta_{m}(t)}{dt^{2}} = \frac{1}{J_{m}}T_{m}(t) - \frac{1}{J_{m}}T_{L}(t) - \frac{B_{m}}{J_{m}}\frac{d\theta_{m}(t)}{dt}$$

編號: 193

國立成功大學 111 學年度碩士班招生考試試題

系 所:製造資訊與系統研究所

考試科目:自動控制

考試日期:0219,節次:2

第2頁,共3頁

題二:

Fig. 2 shows the block diagram of a servomotor. Assume $J=1 \text{kg-m}^2$ and a=1 N-m/rad/sec. If the maximum overshoot of the unit-step input and the peak time are 0.4 and 0.2 sec., respectively,

Hint:

ln	value	ln	Value
0.1	-2.303	0.6	-0.511
0.2	-1.609	0.7	-0.357
0.3	-1.204	0.8	-0.223
0.4	-0.916	0.9	-0.105
0.5	-0.693	1	0

(a) Please find its damping ratio and natural frequency.

(5%)

(b) Please find the gain K and velocity feedback K_f .

(5%)

(c) Please calculate the rise time and settling time.

(5%)

Fig. 2

題三:

The characteristic equation of linear control system is given by $s^3 + 5s^2 + (K+6)s + K = 0$. Please construct the root loci for $K \ge 0$. (15%)

Hint: $s^3 + 4s^2 + 5s + 3$ 之三個根分別為-2.466; $-0.767 \pm j0.793$

編號: 193

國立成功大學 111 學年度碩士班招生考試試題

系 所:製造資訊與系統研究所

考試科目:自動控制

考試日期:0219,節次:2

第3頁,共3頁

題四:

The block diagram of a feedback control system is shown in Fig. 3, and $G(s) = \frac{K}{(s+2)(s+3)}$.

- (a) Please apply the Nyquist criterion to determine the range of K for stability. (15%)
- (b) Please check the answer obtained in part (a) with the Routh-Hurwitz criterion. (10%)

Hint:
$$\sqrt{2} = 1.414$$
 $\sqrt{3} = 1.732$ $\sqrt{5} = 2.236$ $\sqrt{6} = 2.449$ $\sqrt{7} = 2.646$ 令 $K^* = -2K^2$ 比較好計算

Fig. 3

題五:

The forward path of a unity-feedback control system that includes a disturbance signal D(s) is given by $G(s) = \frac{1}{s^2 + 4s + 10}$. Design a PID controller with the transfer function of $H(s) = \frac{K(\tau_1 s + 1)(\tau_2 s + 1)}{s}$ so that the s response to any step disturbance is damped in less than 2 sec at the 2% settling time. (20%)