國立成功大學 113學年度碩士班招生考試試題

編 號: 188

系 所:製造資訊與系統研究所

科 目:統計方法

日期:0201

節 次:第1節

備 註:可使用計算機

國立成功大學 113 學年度碩士班招生考試試題

系 所:製造資訊與系統研究所

考試科目:統計方法

考試日期:0201,節次:1

第1頁,共6頁

- ※ 考生請注意,本試題可使用計算機。請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
- 一、單選題:(52%):每題 4 分,答錯倒扣 1 分
- 1. 假設每天從台南到台北搭乘飛機之旅客平均重量為163磅,標準差為18磅,若旅客36人搭乘同一 飛機旅行,則旅客總重量超過6000磅之機率(p)為何?
 - a. p < 10%
 - b. $10\% \le p < 14\%$
 - c. $14\% \le p < 18\%$
 - d. $18\% \le p$
- 2. 某一工具製造商估計其車床刀具之調整得當機率為0.85,且當車床刀具調整得宜時,其產品通過檢驗之機率為0.95;但當車床刀具調整失當時,則產品之合格機率降為0.25。試問若吾人隨機選取一樣本發現其為不合格,則此時車床刀具調整失當之機率(p)為何?
 - a. p < 0.40
 - b. $0.40 \le p < 0.50$
 - c. $0.50 \le p < 0.60$
 - d. $0.60 \le p$
- 3. 若隨機變數X及Y均呈常態分配,且X和Y獨立,則X-Y之變異數為:
 - a. $\sigma_x^2 + \sigma_y^2$
 - b. $\sigma_x^2 \sigma_y^2$
 - c. $\sqrt{\sigma_x^2 + \sigma_y^2}$
 - d. $\sqrt{\sigma_x^2 \sigma_y^2}$
- 4. 若一產品之規格要求為每包200±5g,今欲瞭解製程之品質能力,隨機抽取25組樣本,每組4個, 經測重得樣本平均數為201g、樣本標準差為2.5g,請計算 C_{pk} 為多少?
 - a. $C_{pk} < 0.20$
 - b. $0.20 \le C_{pk} < 0.60$
 - c. $0.60 \le C_{pk} < 0.80$
 - d. $0.80 \leq C_{pk}$
- 5. 今將三個承軸組裝在一起,每一承軸之長度分配如下:承軸一: N(75, 0.09)cm、承軸二: N(60, 0.16)cm、承軸三: N(25, 0.25)cm,組裝後之長度超過160.5公分之機率(p)為何?
 - a. p < 30%
 - b. $30\% \le p < 35\%$
 - c. $35\% \le p < 40\%$
 - d. $40\% \leq p$
- 6. The ANOVA procedure is a statistical approach for determining whether or not
 - a. the means of two samples are equal
 - b. the means of two or more samples are equal
 - c. the means of more than two samples are equal
 - d. the means of two or more populations are equal
- 7. An experimental design where the experimental units are randomly assigned to the treatments is known as
 - a. factor block design
 - b. random factor design
 - c. completely randomized design
 - d. None of these alternatives is correct.

國立成功大學 113 學年度碩士班招生考試試題

系
所:製造資訊與系統研究所

考試科目:統計方法

考試日期:0201,節次:1

第2頁,共6頁

8. Part of an ANOVA table is shown below. The number of degrees of freedom corresponding to within treatments is:

Source of Variation		Sum of Squares	Degrees of Freedom	Mean Square	F
Between Treatments Within Treatments	w	64	•	2	8
Error					
Total	-	100			

- a. 22
- b. 4
- c. 5
- d. 18
- 9. Each customer entering a department store will either buy or not buy some merchandise. An experiment consists of following 4 customers and determining whether or not they purchase any merchandise. How many sample points exist in the above experiment? (Note that each customer is either a purchaser or non-purchaser.)
 - a. 2
 - b. 4
 - c. 12
 - d. 16
- 10. If P(A) = 0.7, P(B) = 0.6, $P(A \cap B) = 0$, then events A and B are
 - a. not mutually exclusive
 - b. mutually exclusive
 - c. independent events
 - d. complements of each other
- 11. A probability distribution showing the probability of x successes in n trials, where the probability of success does not change from trial to trial, is termed a
 - a. uniform probability distribution
 - b. binomial probability distribution
 - c. hypergeometric probability distribution
 - d. normal probability distribution
- 12. The number of electrical outages in a city varies from day to day. Assume that the number of electrical outages (x) in the city has the following probability distribution.

<u>x</u>	f(<u>(x)</u>
_	_	

- 0.80
- 1 0.15
- 2 0.04
- 3 0.01

The mean and the standard deviation for the number of electrical outages (respectively) are

- a. 2.6 and 5.77
- b. 0.26 and 0.577
- c. 3 and 0.01
- d. 0 and 0.8
- 13. Assume that you have a binomial experiment with p = 0.5 and a sample size of 100. The expected value of this distribution is
 - a. 0.50
 - b. 0.30

國立成功大學 113 學年度碩士班招生考試試題

系 所:製造資訊與系統研究所

考試科目:統計方法

考試日期:0201,節次:1

第3頁,共6頁

- c. 100 d. 50
- 二、單選題: (48%): 每題 3 分, 答錯倒扣 0.7 分
- 1. The random variable x is the number of occurrences of an event over an interval of ten minutes. It can be assumed that the probability of an occurrence is the same in any two-time periods of an equal length. It is known that the mean number of occurrences in ten minutes is 5.3. Then, the probability that there are less than 3 occurrences in ten minutes is
 - a. .0659
 - b. .0948
 - c. .1016
 - d. .1239
- 2. A simple random sample of 144 observations was taken from a large population. The sample mean and the standard deviation were determined to be 1,234 and 120 respectively. The standard error of the mean
 - a. 1,234±120
 - b. 120
 - c. 120*12=1,440
 - d. 10
- 3. Since the sample size is always smaller than the size of the population, the sample mean
 - a. must always be smaller than the population mean
 - b. must be larger than the population mean
 - c. must be equal to the population mean
 - d. can be smaller, larger, or equal to the population mean
- 4. A population has a mean of 75 and a standard deviation of 8. A random sample of 800 is selected. The expected value of \bar{x} is
 - a. 8
 - b. 75
 - c. 800
 - d. None of these alternatives is correct.
- 5. A sample of 24 observations is taken from a population that has 150 elements. The sampling distribution of \overline{x} is
 - a. approximately normal because \bar{x} is always approximately normally distributed
 - b. approximately normal because the sample size is large in comparison to the population size
 - c. approximately normal because of the central limit theorem
 - d. normal if the population is normally distributed
- 6. Doubling the size of the sample will
 - a. reduce the standard error of the mean to one-half its current value
 - b. reduce the standard error of the mean to approximately 70% of its current value
 - c. have no effect on the standard error of the mean
 - d. double the standard error of the mean
- 7. In order to use the normal distribution for interval estimation of μ when σ is known and the sample is very small, the population
 - a. must be very large
 - b. must have a normal distribution
 - c. can have any distribution
 - d. must have a mean of at least 1

國立成功大學 113 學年度碩士班招生考試試題

系 所:製造資訊與系統研究所

考試科目:統計方法

考試日期:0201,節次:1

第4頁,共6頁

- 8. A 95% confidence interval for a population mean is determined to be 100 to 120. If the confidence coefficient is reduced to 0.90, the interval for μ
 - a. becomes narrower
 - b. becomes wider
 - c. does not change
 - d. becomes 0.1
- 9. It is known that the variance of a population equals 1,936. A random sample of 121 has been taken from the population. There is a .95 probability that the sample mean will provide a margin of error of
 - a. 7.84
 - b. 31.36
 - c. 344.96
 - d. 1,936
- 10. In hypothesis testing if the null hypothesis has been rejected when the alternative hypothesis has been true,
 - a. a Type I error has been committed
 - b. a Type II error has been committed
 - c. either a Type I or Type II error has been committed
 - d. the correct decision has been made
- 11. For a lower bounds one-tailed test, the test statistic z is determined to be zero. The p-value for this test is
 - a. zero
 - b. -0.5
 - c. +0.5
 - d. 1.00
- 12. If the level of significance of a hypothesis test is raised from .01 to .05, the probability of a Type II error
 - a. will also increase from .01 to .05
 - b. will not change
 - c. will decrease
 - d. will increase
- 13. The average monthly rent for one-bedroom apartments in Houston has been \$700. Because of the downturn in the real estate market, it is believed that there has been a decrease in the average rental.

The correct hypotheses to be tested are

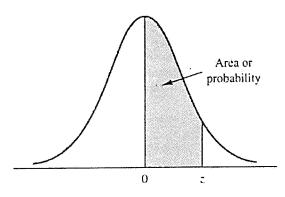
- a. H_0 : $\mu \ge 700$
- H_a: $\mu < 700$
- b. H_0 : $\mu = 700$
- H_a: $\mu \neq 700$
- c. H_0 : $\mu > 700$
- H_a : $\mu \leq 700$
- d. H_0 : $\mu < 700$
- H_a : $\mu \ge 700$
- 14. To compute an interval estimate for the difference between the means of two populations, the *t* distribution
 - a. is restricted to small sample situations
 - b. is not restricted to small sample situations
 - c. can be applied when the populations have equal means
 - d. None of these alternatives is correct.
- 15. If the coefficient of determination is a positive value, then the coefficient of correlation
 - a. must also be positive
 - b. must be zero
 - c. can be either negative or positive
 - d. must be larger than 1

國立成功大學 113 學年度碩士班招生考試試題

系 所:製造資訊與系統研究所

考試科目:統計方法

考試日期:0201,節次:1


第5頁,共6頁

16. In a regression analysis, the coefficient of determination is 0.4225. The coefficient of correlation in this situation is

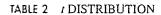
- a. 0.65
- b. 0.1785
- c. any positive value
- d. any value

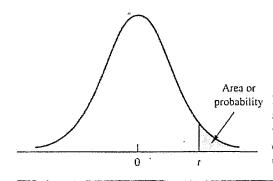
附表

TABLE 1 STANDARD NORMAL DISTRIBUTION

Entries in the table give the area under the curve between the mean and z standard deviations above the mean. For example, for z = 1.25 the area under the curve between the mean and z is .3944.

Z	.00	10.	.02	.03	.04	.05	.06	.07	.08	.09
.0	.0000	.0040	.0800.	.0120	.0160	.0199	.0239	.0279	.0319	.0359
. 1	.0398	.0438	.0478	.0517	.0557	.0596	.0636	.067.5	.0714	.0753
,2	.0793	.0832	.0871	.0910	.0948	.0987	.1026	.1064	.1103	.1141
3	.1179	.1217	.1255	.1293	.1331	.1368	.1406	.1443	.1480	.1517
.4	.1554	.1591	.1628	▼.1664	.1700	.1736	,1772	.1808	.1844	.1879
.5	.1915	.1950	.1985	.2019	.2054	.2088	.2123	.2157	.2190	.2224
.6	.2257	.2291	.2324	.2357	.2389	.2422	.2454	.2486	.2517	.2549
.7	.2580	.2611	,2642	.2673	.2704	.2734	.2764	.2794	.2823	.2852
.8	.2881	.2910	.2939	.2967	.2995	.3023	.3051	.3078	.3106	.3133
9	.3159	.3186	.3212	.3238	.3264	.3289	.3315	.3340	.3365	.3389
1.0	.3413	.3438	.3461	.3485	.3508	.3531	.3554	.3577	.3599	.3621
1.1	.36-13	.3665	.3686	.3708	.3729	.3749	.3770	.3790	.3810	.3830
1.2	.3849	.3869	.3888	.3907	.3925	.3944	3962	.3980	.3997	.4015
1.3	.4032	.4049	.4066	.4082	.4099	.4115	.4131	.4147	.4162	,4177
1.4	.4192	.4207	.4222	.4236	.4251	,4265	.4279	.4292	.4306	.4319
1.5	.4332	.4345	.4357	.4370	.4382	,4394	.4406	.4418	.4429	.4441
1.6	.4452	.4463	.4474	.4484	.4495	.4505	.4515	.4525	.4535	.4545
1.7	.4554	.4564	.4573	4582	.4591	.4599	.4608	.4616	.4625	.4633
1.8	.4641	.4649	.4656	.4664	.4671	.4678	.4686	.4693	.4699	4706
1.9	.4713	.4719	.4726	.4732	.4738	.4744	.4750	.4756	.4761	.4767
2.0	.4772	.4778	.4783	.4788	.4793	.4798	.4803	.4808	.4812	.4817
2.1	.4821	.4826	.4830	.4834	.4838	.4842	.4846	.4850	.4854	.4857
2.2	.4861	.4864	.4868	.4871	.4875	.4878	.4881	.4884	.4887	.4890
2.3	.4893	.4896	.4898	.4901	.4904	4906	.4909	.4911	.4913	.4916
2.4	.4918	.4920	.4922	.4925	.4927	.4929	.4931	.4932	.4934	.4936
2.5	.4938	.4940	.4941	4943	.4945	.4946	.4948	.4949	.4951	.4952
2.6	.4953	.4955	.4956	.4957	.4959	.4960	.4961	.4962	.4963	.4964
2.7	.4965	.4966	.4967	,4968	.4969	.4970	.4971	,4972	.4973	.4974
2.8	.4974	.4975	.4976	.4977	.4977	.4978	.4979	.4979	.4980	.4981
2.9	.4981	.4982	.4982	.4983	.4984	.4984	.4985	.4985	.4986	.4986
3.0	.4987	.4987	.4987	.4988	.4988	.4989	.4989	.4989	.4990	.4990
										and the second of


國立成功大學 113 學年度碩士班招生考試試題


所:製造資訊與系統研究所

考試科目:統計方法

第6頁,共6頁

考試日期:0201,節次:1

probability Entries in the table give t values for an area or probability in the upper tail of the t distribution. For example, with 10 degrees of freedom and a .05 area in the upper tail, $t_{.05} = 1.812$.

Degrees of Freedom	Area in Upper Tail								
	.20	.10	.05	.025	.01	.005			
ļ	1.376	3.078	6.314	12.706	31.821	63.656			
2,	1.061	1.886	2.920	4.303	6.965	9.925			
3	.978	1.638	2.353	3,182	4.541	5.841			
4	.941	1.533	2.132	2.776	3.747	4.604			
5	.920	1.476	2.015	2.571	3.365	4.032			
6	.906	1.440	1.943	2.447	3.143	3.707			
7	.896	1.415	1.895	2.365	2.998	3.499			
8	.889	1.397	1.860	2.306	2.896	3.355			
9	.883	1.383	1.833	2.262	2.821	3.250			
10	.879	1.372	1.812	2.228	2.764	3.169			
11	.876	1.363	1.796	2.201	2.718	3.106			
12	.873	1.356	1.782	2.179	2.681	3.055			
13	.870	1.350	1.771	2.160	2.650	3.012			
14	.868	1.345	1.761	2.145	2.624	2.977			
15	.866	1.341	1.753	2.131	2.602	2.947			
16	.865	1.337	1.746	2.120	2.583	2.921			
17	.863	1,333	1.740	2.110	2.567	2.898			
18	.862	1.330	1.734	2.101	2.552	2.878			
19	.861	1.328	1.729	2.093	2.539	2.861			
20	.860	1.325	1.725	2.086	2.528	2.845			
21	.859	1.323	1.721	2.080	2.518	2.831			
22	.858	1.321	1.717	2.074	2,508	2.819			
23	.858	1.319	1.714	2.069	2.500	2.807			
24	.857	1.318	1.711	2.064	2.492	2.797			
25	.856	1.316	1.708	2.060	2.485	2.787			
26	.856	1.315	1.706	2.056	2.479	2.779			
27	.855	1.314	1.703	2.052	2.473	2.771			
28	.855	1.313	1.701	2.048	2.467	2.763			
29	.854	1.311	1.699	2.045	2.462	2.756			
30	.854	1.310	1.697	2.042	2.457	2.750			
31	.853	1.309	1.696	2.040	2.453	2.744			
32	.853	1.309	1.694	2.037	2.449	2.738			
33	.853	1.308	1.692	2.035	2.445	2.733			
34	.852	1.307	1.691	2.032	2.441	2.728			