國立成功大學八十三學年度發送阿八學考試(自動控制 試題)第2页

4. The lumped model of a machine is shown below.

(a): Find the equations of motion for the system. 10%

(b): Derive the transfer function between the input F(s) and output $X_1(s)$. 15%

5. As shown is the block diagram of a machining system.

(a): Sketch the frequency response of G₁(s) in polar plot and Bode (gain/phase) plot. 10%

(b): For the three cases of $G_2(s)$: (1): $G_2(s)=K$, (2): $G_2(s)=K/(\tau s+1)$ and

(3):
$$G_2(s) = \frac{K}{\sum_{n=1}^{2} + 2\sum_{n=1}^{n} S + 1}$$

discuss the stability of this system with each G₂(s). 15% (Suggest using Nyquist criterion)

Wn: natural frequency of G2(5)

9: damping ratio of G2(5)

國立成功大學八七 學年度智慧的入学考試(自動控制 試題)第1頁

- 1. (a) Explain the meaning of the absolute stability of a control system ?
 And, what's the relative stability in the time domain ?
 - (b) Which informations can you know from the dominant poles of a control system?
 - (c) What are the basic rules to define a point in the s-plane, which is on the root locus of a control system ? explain it, please ?
 - (d) Define the meaning of percent of overshoot, peak time, settling time and rise time in the time response of a second order control system?
 (20 %)
- 2. The system illustrated in Fig. is a unity feedback control system with a minor feedback loop (output derivative feedback).
 - (a) determine the damping factor and natural frequency, if a=0 ? Also, determine the steady state error resulting from a unit-ramp input ?
 - (b) determine the derivative feedback constant "a", which will increase the damping factor of the system to 0.7 ? and, what's the steady state error with a unit ramp input for the setting of the derivative feedback constant?

3. The characteristic equation of a servo control system is given as: $s^3 + 3 k s^2 + (k+2) s + 4 = 0$ Determine the range of value "k" for the system to be stable?