國立成功大學八十四學年度製造的硕士附考試(工程數學 試題)共二頁

6. Applying the Laplace transform method to solve the differential equation: (10%)

$$y''+2ty'-4y=0$$
, with $y(0)=y'(0)=0$

- 7. Let $F = -i + xyzj y^2k$, and let C be given by x = t, y = |t|, z = 1, t = -1 to 1, compute line integral $\int_{c} F = ?$ (10%)
- 8. Evaluate $\int_C \frac{e^{z^2}}{z^3(z-i)}$, where C encloses 0 and i. (10%)
- 9. Solve the given partial differential equation: (10%)

$$\frac{\partial u}{\partial t} = a^1 \frac{\partial^2 u}{\partial x^2}$$
, $0 < x < L$, $t > 0$, a^2 is constant.

I.C.:
$$u(x,0) = 2x$$
, $0 < x < L$.

B.C.:
$$\frac{\partial u}{\partial x}(0,t) = \frac{\partial u}{\partial x}(L,t) = 0$$
, $t > 0$.

國立成功大學八十四學年度製造所領域試(工程數學 試題)第一页

1. Compute
$$\int_0^1 \frac{1}{x^k} dx = ?$$
, k is constant. (5%)

- 2. Find the maximum and minimum values of 6x+3y+2z-5 on the surface $4x^2+2y^2+z^2=70$. (10%)
- 3. Compute the volume of the solid bounded by the circular cylinders $x^2+y^2=1$ and $x^2+z^2=1$. (10%)
- 4. Determine the general solution of the following differential equations:

(a).
$$xy''+2y'=4x^3$$
 (10%)

(b).
$$y''+y = Sec x$$
, $0 < x < \pi/2$ (10%)

5. A system of homogeneous linear equations with constant coefficients.

$$\mathbf{x'} = \mathbf{A}\mathbf{x} \tag{1}$$
 Where A is a matrix,

$$\mathbf{A} = \begin{bmatrix} 011\\101\\110 \end{bmatrix}$$

- (a). Find the eigenvalue of [A]. (5%)
- (b). Find the eigenvector of [A]. (5%)
- (c). Give the general solution of Eq. (1). (5%)