甚

Differential Equations

- 1. Solve the differential equation $dy/dx = -4xy^2$ (7%) and then solve the initial-value problem $dy/dx = -4xy^2$, y(0) = 1.
- 2. Find a curve in the xy-plane that passes through (0, 3) and whose tangent line at a point (x, y) has slope 2x/y².
- 3. Euler's Method: (8%)

To approximate the solution of the initial-value problem

$$y = f(x, y), y(x_0) = y_0$$

proceed as follows:

Step 1. Choose a nonzero number h to serve as an increment or step size along the x-axis, and let

$$x_1 = x_0 + h$$
, $x_2 = x_1 + h$, $x_3 = x_2 + h$,...

Step 2. Compute successively

$$y_1 = y_0 + f(x_0, y_0)h$$

$$y_2 = y_1 + f(x_1, y_1)h$$

$$y_3 = y_2 + f(x_2, y_2)h$$

...

$$y_{n+1} = y_n + f(x_n, y_n)h$$

The number y_1 , y, y_3 ... in these equations are the approximations of $y(x_1)$, $y(x_2)$, $y(x_3)$,...

Use Euler's Method with a step size of 0.1 to make a table of approximate values of the solution of the initial-value problem

$$y' = y - x$$
, $y(0) = 2$
over the interval $0 <= x <= 0.5$.

The general linear second order partial differential equation (P.D.E.) in three variables (one dependent and two independents) is,

$$\begin{split} &a(x,y)\frac{\partial^2 u}{\partial x^2} + 2b(x,y)\frac{\partial^2 u}{\partial x \partial y} + c(x,y)\frac{\partial^2 u}{\partial y^2} + d(x,y)\frac{\partial u}{\partial x} \\ &+ e(x,y)\frac{\partial u}{\partial y} + f(x,y)u(x,y) + g(x,y) = 0 \end{split}$$

(1)

Most of the equations we encounter will be of this form. Please explain (briefly) the following questions based on the above equation.

備註:(f)、(g)、(h)的答案只須包含 1.統制方程 2.邊界或初始條件 3.輔助說明圖(不須寫出求解計算過程)。

袋

(15%) write the Laplace transform of the following differential equation:

Solve the differential equation by using the inverse transform method.

(108) theorem to determine the values of y at time =0 and t=00, respectively, for the following:

(i)
$$y(s) = \frac{13}{5^2 + 18}$$

(ii) $y(s) = \frac{5+2}{5(5^2 + 95 + 16)}$

88 学年度 國立成功大學 息 告 系 工程数型 200

悬

- Let A and B be $n \times n$ orthogonal matrices. A' and B' are the transpose matrices for A and B, respectively. "det A" is the determinant of matrix A. Prove: a) A' and A⁻¹ are orthogonal. (10%)
 - b) AB is also orthogonal. (5%)
- In V' (4-dimensional space), let u = (3,2,1,0), v = (1,0,1,2), w = (5,4,1,-2). Are u, v, w linearly independent? (10%)