Calculus (2004)

Note: No partial credits will be given without evidence revealing that correct methods are applied.

1. (a) Let

$$f(x) = \begin{cases} x + 1, x < 2 \\ x + 3, x > 2 \end{cases}.$$

Give $\lim_{x\to 2} f(x)$. Explain your answer. (10 points)

(b) Let
$$f(x) = \frac{\sin(t)}{t}$$
. Give $\lim_{t\to 0} f(x)$. Explain your answer. (10 points)

- 2. Let $f(x) = \sin^{-1}(x) \cdot \cos(x)$. Find df/dx. (20 points)
- 3. (a) Give $\int \frac{e^x}{x} dx$. (10 points) (b) Give $\int \tan^3(x) \sec^4(x) dx$. (10 points)
- 4. Let $9x^2 18x + 4y^2 + 16y = 11$. Is it an equation of an ellipse, parabola, or hyperbola? (10 points)
- 5. Let \bar{a} , \bar{b} , and \bar{c} be 3×1 vectors. Let $\bar{b}=(1,0,0)$ and $\bar{c}=(0,1,0)$. Solve the equation $\bar{a}\cdot(\bar{b}\times\bar{c})=0$ for \bar{a} . Is the solution for \bar{a} unique? Explain your answer. (30 points)