就題 共 板 頁

The torque-speed curve is $T_m = -8\omega_m + 200$.

(25%)

Please

- (1) Compute the $G(s) = \theta_L(s) / Ea(s)$
- (2) Is it a stable system? Why?

A control system is shown in Fig.2, G(s)=C(s)/R(s)

(25%)

Please compute the followings: (25%)

- $\begin{array}{ll} (1)\,T_r & \quad \text{(Rising time)} \\ (2)\,T_p & \quad \text{(Peak time)} \end{array}$
- (3) T_s (Settling time) (4) %OS (Max overshooting)
- (5) $e_{ss}(\infty)_{step}$ (Steay-State error for step input)

F E205 4-1

93學年度國立成功大學 製造工程研究所 甲組 自動控制

 $\frac{-}{}$. For the system shown in Fig.3, find k and α to yield a settling time of 0.4 second and 30% overshoot.

(25%)

 \square . For the system shown in Fig.4, please find K_D and K_P to design a PD controller so that the modified system can operate with a peak time that is 2/3 of uncompensated system at 20% overshoot and e_{ss} $(\infty)_{step} = 0$.

(25%)

共計四級!