編號:🗲 347 系所:製造工程研究所丙組

科目:微積分

Calculus (2005)

- 1. (30 pts) The Euler formula: $e^{i\theta} = \cos \theta + i \sin \theta$. While this formula can be proven with a Maclaurin expansion, it is also applied to find $\cos(n\theta)$ and $\sin(n\theta)$ as polynomial functions of $\cos \theta$ and $\sin \theta$, where n is an integer.
 - (a) (10 pts) Apply the above Euler formula to obtain $\cos(4\theta)$ and $\sin(4\theta)$ in terms of $\cos\theta$ and $\sin\theta$.
 - (b) (10 pts) Give $\cos(k\theta)$ in terms of $\cos\theta$ and $\sin\theta$, where k is a positive integer.
 - (c) (10 pts) Apply the Euler formula to derive $d\cos\theta/d\theta$ and $d\sin\theta/d\theta$. **Note:** no credit will be given unless the Euler formula is applied in the derivation.
- 2. (15 pts) Solve the following problems.
 - (a) (5 pts) Let $y = 1/\ln x$. Derive dy/dx.

(b) (10 pts) Let
$$y = \int_{3}^{x^2+x} \frac{1}{t^3+1} dt$$
. Derive $\frac{dy}{dx}$.

3. (15 pts) A ball thrown horizontally from a 100 ft cliff at a velocity of 50 ft/sec follows the parametric equations

x = 50t, and $y = 100 - 16t^2$, where x and y are in feet, and t in seconds. Find the slope of its path at time t.

編號: 4347 系所: 製造工程研究所丙組

科目:微積分

4. (20 pts) Solve the following problems.

(a) (10 pts) Let $B = \int_{-1}^{1} \frac{1}{x^2} dx$. Give B.

(b) (10 pts) Let A be the area of the region bounded above by y = x + 2 and below by $y = x^2$. Find A.

5. (20 pts) Answer the following questions.

(a) (5 pts) $\lim_{n\to\infty} (1+\frac{1}{c})^n = ?$, where c > 0.

(b) (5 pts) $\lim_{n\to\infty} (1+\frac{1}{n})^c = ?$, where c > 0.

(c) (10 pts) Is it true that $\lim_{n\to\infty} (1+\frac{1}{n})^n = 1$? Explain your answer.