編號: 294 系所:製造工程研究所丙組

科目:物理

本試題是否可以使用計算機: ☑可使用 , □不可使用 (請命題老師勾選)

Physics (2007)

1. (40 pts) Sir Isaac Newton published the law of gravitation in 1967.

$$F_{g} = \frac{Gm_{l}m_{2}}{r^{2}},$$

where F_g is the magnitude of the gravitational force on either particle, m_1 and m_2 are their masses, r is the distance between them, and G is a fundamental physical constant called the gravitational constant. Answer the following questions.

- (a) (20 pts) Propose a method to determine the value of G.
- (b) (20 pts) Give the potential error sources of your method.
- 2. (30 pts) Let $U_0 > 0$, and let U(x) be a potential function, where

$$U(x) = 0$$
 for $0 \le x \le L$, and $U(x) = U_0$ for $x < 0$ or $x > L$.

This function is often called a square-well potential. A particle of mass m is trapped in the well. Let E be the total energy of the particle, where $E < U_0$. Then, the particle is bound. Find the bound-state solutions of the Schrödinger equation.

3. (30 pts) Collectively, Maxwell's equations consist of the following four equations:

Maxwell's equations, while supplemented by the Lorentz force equation $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$ and the conservation of charge, describe a lot of the electromagnetic phenomena we encounter. Answer the following questions.

- (a) (15 pts) A coil of wire containing 500 circular loops with radius 4.00 cm is placed between the poles of a large electromagnet, where the magnetic field is uniform and at an angle of 60° with the plane of the coil. The field decreases at a rate of 0.200 T/s. What are the magnitude and direction of the induced emf?

 Give your answer clearly. Draw a graph if it is needed to clarify your answer.
- (b) (15 pts) Let c be the speed of electromagnetic waves in vacuum. Then,

$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}.$$

Give the assumptions about electromagnetic waves that are needed to derive the above speed formula of electromagnetic waves in vacuum from Maxwell's equations.