细粉 系所組別

考試科目 工程數學

製造資訊與系統研究所用組

考社日期:0307· 節次:3

Problem 1 (20 points)

Solve the following initial-value problem:

$$\begin{cases} y'' + 4y' + 4y = (3 + x)e^{-2x} \\ y(0) = 2, y'(0) = 5 \end{cases}$$

Problem 2 (20 points)

Suppose that two identical pendulums, having length l and point mass m, are coupled by a linear spring with force constant k, as sown in the above schematic.

(a) Show that, when the displacement angles θ₁(t) and θ₂(t) are small, the system of linear differential equations describing the motion is

$$\ddot{\theta}_1 + \omega^2 \theta_1 = K(\theta_2 - \theta_1), \quad \ddot{\theta}_2 + \omega^2 \theta_2 = K(\theta_1 - \theta_2),$$

where $(\cdot) = d(\cdot)/dt$, $\omega^2 = g/l$, and K = k/m, with g being the gravitational acceleration.

(b) Use Laplace transform to soive the system with the following initial conditions:

$$\theta_1(0) = \theta_0$$
, $\dot{\theta}_1(0) = 0$, $\theta_2(0) = \psi_0$, $\dot{\theta}_2(0) = 0$,

where θ_0 and ψ_0 are constants.

Problem 3 (20 points)

Use Stokes' theorem to evaluate

$$\oint_C \left(z^2 e^{x^2} dx + xy^2 dy + \tan^{-1} y dz\right),$$

where C is the circle $x^{2} + y^{2} = 9$ running counterclockwise on the x-y plane.

Problem 4 (20 points)

Use diagonalization to solve the following system:

$$\frac{d\mathbf{X}}{dt} = \begin{pmatrix} 1 & 3 \\ 2 & 2 \end{pmatrix} \mathbf{X} + \begin{pmatrix} e^t \\ e^t \end{pmatrix}$$

where $\mathbf{X} = (x_1(t) \ x_2(t))^T$

(背面仍有题目 請繼續作签)

 $\int_{-\infty}^{\infty} e^{-x^2/4p^2} e^{i\alpha x} dx = 2\sqrt{\pi} p e^{-p^2\alpha^2}$

Use Fourier transform to solve the heat equation

 $k\frac{\partial^2 u}{\partial -2} = \frac{\partial u}{\partial t} \qquad (-\infty < x < \infty, t > 0),$

subject to the initial condition $u(x,0) = e^{-x^2}$ ($-\infty < x < \infty$). Hint: Use the result