編號:	84	國立成功大學一〇一學年度碩士班招生考試試題	共 2 頁・第	斜 頁
系所組別	: 機械工程學系乙	丁組		
考試科目	: 材料力學		考試日期:0225·首	<u> </u>

Problem 1. (25%)

- Please provide us <u>Young's modulus</u>, typical <u>yielding strength</u>, and <u>density</u> of <u>aluminum alloys</u> and <u>low</u> <u>carbon steels</u>. (4 %)
- (2) The following figure is the typical engineering stress-strain curves for common low carbon steels. Please tell us how to find the following material properties from the curve: <u>Young's modulus, vielding</u> <u>strength</u>, <u>modulus of resilience</u>, and <u>modulus of toughness</u>. In addition, please also draw the corresponding <u>true stress-strain curve</u>. (8 %)

(3) Bulk modulus K of an isotropic material is defined as $K \equiv -p/(\Delta V/V)$, where ΔV is the change in a volume V produced by hydrostatic pressure p. Please show that $K = \frac{E}{3(1-2\nu)}$. (E and v are Young's modulus and Poisson's ratio.) (13 %)

Problem 2. (25 %)

- (1) Please show that for a uniform beam (length L, inertia I, Young's modulus E) under pure bending (bending moment M), the strain energy can be expressed as $U = \int_{0}^{L} \frac{M^2}{2EI} dx$. (5%)
- (2) Please state the principle of minimum potential energy and explain its physical meaning. (5%)
- (3) Consider the stepped cantilever beam shown below (with moment of inertia *I* and *2I*), please determine the vertical deflection and slope at point A by Castigliano's theorem. (15 %)

(背面仍有題目,請繼續作答)

編號:	84	國立成功大學一〇一學年度碩士班招生考試試題	共 2 頁,第2頁
系所組別	: 機械工程學系乙、	丁組	
考試科目	: 材料力學		考試日期:0225,節次:1

Problem 3. (25%)

Consider a slender beam that has a rectangular cross section as shown below. The beam is nonhomogeneous along the transverse direction such that the Young's modulus and the coefficient of thermal expansion are

$$E(y) = E_0\left(1 + \frac{y}{h}\right)$$
 and $\alpha(y) = \alpha_0\left(2 - \frac{y}{h}\right)$, respectively.

Given that the beam is stress- and deformation-free at temperature 0 and is subjected to a uniform temperature change from 0 to T, answer the following questions:

- (1) Write the functional form of the strain distribution $\varepsilon_x(y)$ without determining the constants. (5%)
- (2) Determine the stress distribution $\sigma_x(y)$ and the bending radius of curvature of the beam at temperature T. (20%)

Problem 4. (25%)

Consider an elastic-perfectly-plastic circular shaft of length L and radius c subjected to a torque T. Shear modulus and shear yielding strength of the shaft are G and τ_{γ} , respectively.

- (1) Given the torque $T = 2c^3 \tau_r$, determine the shear stress distribution $\tau(r)$ across a section of the shaft, r being the distance from the axis of the shaft. (15%)
- (2) Determine the permanent angle of twist after the torque is released. (10%)