編號: 79 **國立成功大學 102 學年度碩士班招生考試試題** 系所組別:機械工程學系丁組 考試科目:機械製造及材料

※ 考生請注意:本試題不可使用計算機

1. Explain or distinguish the following terms: (12%)

(a) Young's vs Shear modulus (b) Fatigue vs Creep

(c) Toughness vs Resilience

2. (a) What is the Schmid's law for plastic deformation in critical resolved shear stress (τ_{CRSS})? (4%)

(b) Describe how temperature, purity, strain rate and dislocation density affect the τ_{CRSS} respectively. (4%)

(c) Would you expect a crystalline ceramic material to strain harden at room temperature? Why or why not?

(4%)

3. (a) What is the relationship between the unit cell length a and atomic radius R in BCC crystal structure?
(3%)

(b) Calculate the atomic packing factor of BCC crystal structure. (5%)

(c) Molybdenum has a BCC crystal structure and an atomic radius of 0.1363 nm. Compute the interplanar spacing for the (111) set of planes. (6%)

4. For alloys of two hypothetical metals A and B, there exist an α , A-rich phase and a β , B-rich phase. From the mass fractions of both phases for two different alloys (given below), which are at the same temperature, determine the composition of the phase boundary (or solubility limit) for (a) α and (b) β phases at this temperature. (12%)

Alloy Composition	Fraction a Phase	Fraction ß Phase
60 wt% A-40 wt% B	0.56	0.44
30 wt% A-70 wt% B	0.12	0.88

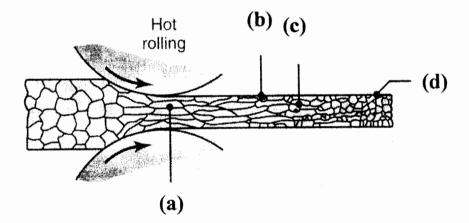
(背面仍有題目,請繼續作答)

共 3 ^{頁,第}/頁

考試日期:0223,節次:2

	編號: 79	國立成功大學 102 學年度碩士班招生考試試題	共3頁,第 2 頁
	系所組別	: 機械工程學系丁組	
İ	考試科目	:機械製造及材料	考試日期:0223,節次:2

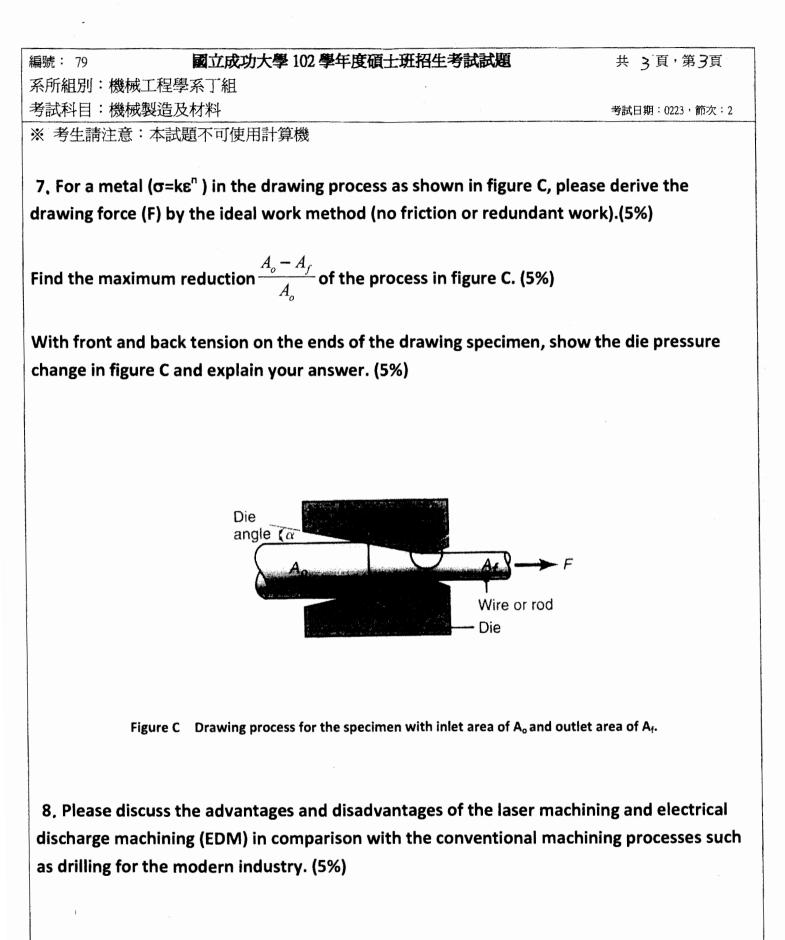
※ 考生請注意:本試題不可使用計算機


5. With a ductile metal ($\sigma = k\epsilon^{2n}$) in the uni-axial tensile test, please derive the necking strain (in true strain) of it . (10%)

Express the maximum load in a form of the necking strain and the initial cross-sectional area A_o of the specimen. (5%)

6. Please explain the microstructure change at the locations of (a) to (d) as shown in the figure A of the metal in hot rolling. (5%)

How to prevent the defect of the sheet metal in rolling as shown in figure B and why? (5%)


How to obtain a metal casting with single crystal microstructure and why? (5%)

