編號: 80	國立成功大學 102 學年度碩士班招生考試試題	
系所組別:機械工	L程學系戊組	
考試科目:自動打	空制	考試日期:0223, 節次:1

※考生請注意:本試題不可使用計算機

1. (25%)

A feedback control system and the Bode plots of loop transfer function, L(s)=G(s)C(s), are shown below, where K_{Δ} is the modeling uncertainty. In order to investigate what value of K_{Δ} can be tolerated in this feedback system to keep stable, please do the following analysis.

- (1) (5%) Please draw the Nyquist plot of L(s).
- (2) (5%) Please draw the Nichols plot of L(s)
- (3) (5%) If K_{Δ} is a positive real number, please draw the root loci when K_{Δ} varies from 1 to 10.

(4) (10%) Now, if K_{Δ} is a complex number and of the form,

$$K_{\Delta}=e^{-j\theta},$$

and a control-engineer proposes a method called "phase loci" by varying θ to see how the roots change in the equation,

$$1 + e^{-j\theta}G(s)C(s) = 0.$$

Explain what would be the value of θ that makes the branch intersect the imaginary axis and the corresponding intercept value?

共 3 頁,第2頁				
糸川組別・筬横二任学糸以組				
考試日期:0223,節次:1				
※ 考生請注意:本試題不可使用計算機				

2. (25%)

A control system shown below will become unstable as K increases if $K_h=0$. However, an added zero from the feedback can change this situation.

- (1) (15%) Please use root-locus method to investigate the effect of increasing the value of K_h .
- (2) (10%) Based on your result in (1), please discuss how to determine proper values of K and K_h if your concerns are both the performance and the stability of the system.

編號: 80	國立成功大學 102 學年度碩士班招生考試試題	共 3 頁 [,] 第3頁
系所組別:機械工	2程學系戊組	·
考試科目:自動控	医制度的	考試日期:0223,節次:1

※ 考生請注意:本試題不可使用計算機

3. A two-tank system is used in a process plant, as shown in the following figure. The flow rates between tanks and draining from tank 1 are linearly proportional (gains: k₁ and k₂, respectively) to height difference and the height of tank 1, respectively.

- (1) Find the transfer function between inflow to tank 1, $Q_{in}(t)$, and the output, $h_2(t)$. (8%)
- (2) For a unit impulse input in inflow (i.e. a sudden addition of liquid) find the initial value of $\dot{h}_2(t)$ if $A_1=1$, $A_2=1$, $k_1=1$ and $k_2=1$. (5%)

4. A mechanical system is modeled to be a double integrator plant k_p/s^2 . The input and output are force and position respectively. The block diagram for positioning feedback control is sketched below.

(1) Assume that the controller is of PD-type: $G_{c}(s)=K_{c}(1+T_{d}s)$. Find the unit step disturbance response.

(Assume $(K_c K_p T_d)^2 - 4K_c K_p > 0.)$ (10%)

- (2) Show that if the control gain K_c of the PD controller is set large, the dominant mode becomes close to e^{-t/T_d} . Find the unit step disturbance response for large K_c retaining only the dominant mode. (12%)
- (3) Let the mechanical system include a vibrating mode which has been ignored in the model k_p/s^2 .

Let a more realistic plant model be $K_p \left[\frac{1}{s^2} - \frac{1}{s^2 + 2\varsigma w_n s + w_n^2} \right]$.

In this case a large control gain K_c is not a good idea. Show a sample root locus plot when the control gain K_c in the PD controller is changed from 0 to ∞ . Find the condition in terms of w_n , ς and T_d so that the closed loop system remains stable for all positive K_c . (15%)