※ 考生請注意：本試題不可使用計算機
P1．（a）Consider a particle moves in one－dimension．If its acceleration－displacement relation is known and can be plotted as a graph，please tell us how to calculate the velocity of the particle． （5\％）
（b）Please derive the principle of angular impulse and momentum for a particle．Please explain the angular momentum would remain constant under what kind of conditions．（10\％）
（c）Please derive the principle of work and energy．Please explain the conservation of energy will apply under what kind of conditions．（10\％）

P2．The particle has a mass of 1 kg and is confined to move along the smooth horizontal slot due to the rotation of the arm $O A$ ．Determine the force of the rod on the particle and the normal force of the slot on the particle when $\theta=30^{\circ}$ ．The rod is rotating with a constant angular velocity $\dot{\theta}=2 \mathrm{rad} / \mathrm{s}$ ．Assume the particle contacts only one side of the slot at any instant． （25\％）

編號：83 國立成功大學102學年度碩士班招生考試試題
系所組別：機械工程學系乙，戊組
考試科目：動力學
考試日期：0223，節次：2
※ 考生請注意：本試題不可使用計算機

P3．The disk of mass \mathbf{m} and radius \mathbf{r} is released from rest with θ close to zero and rolls without slipping on the circular guide of radius R．（a）（5\％）Derive expression for the angular velocity of the disk（b）（ $\mathbf{1 0 \%}$ ）Derive expression for the acceleration of contact point \mathbf{C}（c）（ $\mathbf{1 0 \%}$ ）Derive the normal force \mathbf{N} between the disk and the guide in terms of θ and its time derivatives．

编號：83 國立成功大學102學年度碩士班招生考試試題 共 3頁，第了頁
系所組別：機械工程學系乙，戊組
考試科目：動力學
※ 考生請注意：本試題不可使用計算機

P4．Within the $87^{\text {th }}$ and $91^{\text {st }}$ floor of Taipei 101 there is a tuned mass damper for reducing vibration of the skyscraper due to typhoon and earthquakes．A picture of the damper and a mechanical model of the building and the tuned mass damper are shown below．The first flexural mode of vibration of the building can be modeled as a mass of M and a spring with stiffness K ．The tuned mass damper can be modeled as a simple pendulum with length r and mass m ．The wind force is $\mathrm{F}_{0} \cdot \cos (\Omega \mathrm{t})$ ．Assume that the angular displacement of the pendulum is very small．（a）（ $\mathbf{1 5 \%}$ ）Derive the equations of motion for the horizontal displacement， x_{1} ，of the building and the tune mass damper，x_{2} ．（b）（ $\mathbf{1 0 \%}$ ）Show that by proper design of the tuned mass damper the vibration of the building can be reduced．

