編號: 83	國立成功大學 102 學年度碩士班招生考試試題	共 3頁,第 頁
系所組別:機械	工程學系乙、戊組	
考試科目:動力	學	考試日期:0223,節次:2
※ 考生請注意	本試題不可使用計算機	

P1. (a) Consider a particle moves in one-dimension. If its acceleration-displacement relation is known and can be plotted as a graph, please tell us how to calculate the velocity of the particle.(5%)

(b) Please derive the principle of angular impulse and momentum for a particle. Please explain the angular momentum would remain constant under what kind of conditions. (10%)

(c) Please derive the principle of work and energy. Please explain the conservation of energy will apply under what kind of conditions. (10%)

P2. The particle has a mass of 1 kg and is confined to move along the smooth horizontal slot due to the rotation of the arm *OA*. Determine the force of the rod on the particle and the normal force of the slot on the particle when $\theta = 30^{\circ}$. The rod is rotating with a constant angular velocity $\dot{\theta} = 2$ rad/s. Assume the particle contacts only one side of the slot at any instant. (25%)

(背面仍有題目,請繼續作答)

編號: 83	國立成功大學 102 學年度碩士班招生考試試題	共3頁,第2頁
系所組別:機械工程學系乙、戊組		
考試科目:動力學		考試日期:0223・節次:2
※ 考生請注意:本試	題不可使用計算機	

P3. The disk of mass **m** and radius **r** is released from rest with θ close to zero and rolls without slipping on the circular guide of radius **R**. (a) (5%) Derive expression for the angular velocity of the disk (b) (10%) Derive expression for the acceleration of contact point **C** (c) (10%) Derive the normal force **N** between the disk and the guide in terms of θ and its time derivatives.

編號: 83	國立成功大學 102 學年度碩士班招生考試試題	共 3 頁, 第 3 頁	
系所組別:機械工程學系乙、戊組			
考試科目:動力學	!	考試日期:0223・節次:2	
※ 考生請注意:	本試題不可使用計算機		

P4. Within the 87th and 91st floor of Taipei 101 there is a tuned mass damper for reducing vibration of the skyscraper due to typhoon and earthquakes. A picture of the damper and a mechanical model of the building and the tuned mass damper are shown below. The first flexural mode of vibration of the building can be modeled as a mass of M and a spring with stiffness K. The tuned mass damper can be modeled as a simple pendulum with length r and mass m. The wind force is $F_{0.}\cos(\Omega t)$. Assume that the angular displacement of the pendulum is very small. (a) (15%) Derive the equations of motion for the horizontal displacement, x₁, of the building and the tune mass damper, x₂. (b) (10%) Show that by proper design of the tuned mass damper the vibration of the building can be reduced.

