1．A liquid water pump on the ground，taking water in at $20^{\circ} \mathrm{C}, 1 \mathrm{~atm}$ ，at a flow rate of $2 \mathrm{~kg} / \mathrm{s}$ ，brings the pressure up so that the water can be delivered to a receiver tank maintaining a gauge pressure of 400 kPa at the top floor 10 m above ground level． Assume the process is adiabatic and the water stays at $20^{\circ} \mathrm{C}, v=0.001 \mathrm{~m}^{3} / \mathrm{kg}$ ．Also neglect any difference in kinetic energy．Find the required pump work．（15\％）

2．An industrial turbine process requires a steady $0.5 \mathrm{~kg} / \mathrm{s}$ of air at 200 kPa ．This air is to be the exhaust from a specially designed turbine with inlet state $400 \mathrm{kPa}, 400 \mathrm{~K}$ ． The heat transfer could be obtained from a source at 500 K if necessary．This process may be assumed to be reversible and the changes in kinetic and potential energy are negligible．Air is an ideal gas，with constant specific heat，$C_{p}=1.004$ $\mathrm{kJ} / \mathrm{kg}-\mathrm{K}$ and $R=0.287 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ ．
（a）Which of the following processes：（i）polytropic with $\mathrm{n}=1.3$ ；（ii）isothermal； （iii）adiabatic，will produce the maximum work output？Demonstrate your answer by evaluating the work of air flowing for each case．Also，sketch the processes on the same $\mathrm{P}-\mathrm{v}$ and T－s diagrams．（25\％）
（b）Could the process with maximum work output be possible to take place？ Demonstrate your answer in accordance with the principle of the increase of entropy．（10\％）

系所組別：機械工程學系甲組
考試科目：熱力學
※ 考生請注意：本試題可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

3．A Stirling cycle operates with air；the thermal efficiency is 45% ．At the beginning of the isothermal expansion the pressure is 5 bars and the temperature is $257^{\circ} \mathrm{C}$ ，and at the end of isothermal compression the volume is two－thirds the maximum volume．Use a cold air－standard basis and ignore kinetic and potential energy effects．Determine the mean effective pressure of the cycle．（ 20% ）

4．（a）The Joule－Thomson coefficient is defined as $\mu_{J}=\left(\frac{\partial T}{\partial p}\right)_{h}$ ．Show that $c_{p}=\frac{1}{\mu_{J}}\left(\frac{\partial h}{\partial p}\right)_{T}$.
（b）In general，the specific entropy can be regarded as a function of the form $s=s(T, v)$ and the specific internal energy can be regarded as a function of the form $u=u(T, v)$ ．The equation of state of a van der Waals gas is $P=\frac{R T}{v-b}-\frac{a}{v^{2}}$ in which R, a and b are three constants．If the specific heat c_{v} is also a constant， show that

$$
u=u_{0}+c_{v}\left(T-T_{0}\right)+a\left(\frac{1}{v_{0}}-\frac{1}{v}\right)
$$

with u_{0} denoting $u=u\left(T_{0}, v_{0}\right) . \quad(20 \%)$

