※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

Problem 1
（a）Consider a thin skewed plate subjected to a uniform distribution of stress along its side．Please calculate its σ_{x}, σ_{y} ，and $\tau_{x y}$ and find the principal stresses．（10 Points）

（b）A solid steel shaft of circular cross section， 0.02 m in diameter，yields when a torque of $400 \mathrm{~N} \cdot \mathrm{~m}$ is applied．A circular tank， 1.0 m in diameter and made of the same material，is to contain certain internal pressure $\boldsymbol{p}=3.0 \mathrm{MPa}$ ． What wall thickness t is required for a safety factor of 2．0？You should use both Tresca and maximum distortional energy theories for carrying on the calculations．（15 Points）

Problem 2

Consider the following figure，two slender beams are builtin to a rigid disk and to rigid walls．Please find the rotation stiffness of the system．The rotation stiffness is defined as the ratio between the applied torque T and the rotation angle of the rigid disk．（25 Points）

※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

Problem 3

The beam assembly shown is subjected to a concentrated load P at point B ．Determine the support reactions at the fixed end D by using Castigliano＇s theorem（alternative solution approach is not allowed）．For both beams： cross－sectional area is A ，area moment of inertia is I ，the Young＇s modulus is E ，and the Poisson＇s ratio is v ． （20 Points）

Problem 4

Consider a slender rod subjected to uniform temperature increase T_{0} and tension σ_{0} as shown．The Young＇s modulus，Poisson＇s ratio，and coefficient of thermal expansion of the rod are E ，v ，and α ，respectively．If the rod is constrained in the out－of－plane direction such that it＇s under plane strain condition，the rod extension and volume change as results of the thermomechanical load are ΔL_{1} and ΔV_{1} ，respectively；and if the rod is under plane stress condition，the rod extension and volume change are ΔL_{2} and ΔV_{2} ，respectively．
（a）Determine $\Delta L_{2} / \Delta L_{1}$ ．（ 20 Points）
（b）Determine $\Delta V_{2} / \Delta V_{1}$ ，assuming the rod is incompressible．（ 10 Points）

