國立成功大學 104 學年度碩士班招生考試試題
系所組別：機械工程學系甲乙丙丁戊組
考試科目：工程數學
考試日期：0211，節次：3
第1頁，共2頁
※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

1． $\mathbf{(1 5 \%)}$ If $A=\left(\begin{array}{cc}2 & 2 \\ 2 & -1\end{array}\right)$ ，and an orthogonal matrix P can diagonalize A to a diagonal matrix D such that $D=P^{T} A P$ ，find P and D as well as calculate A^{100} ．

2．Solve the following ODEs：
$(10 \%)(2.1) \quad y^{\prime \prime}+4 y^{\prime}+4 y=2 e^{-2 x}$
$(10 \%)(2.2) x^{2} y^{\prime \prime}+x y^{\prime}-y=x^{2} e^{x}$

3．（20\％）Solve，by use of Laplace transform，the one－dimensional diffusion problem formulated below：

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =v \frac{\partial^{2} u}{\partial x^{2}} & & (0<x<\infty, t>0) \\
u & =U \cdot H(t) & & (x=0) \\
u & \rightarrow 0 & & (x \rightarrow \infty) \\
u & =0 & & (t=0)
\end{aligned}
$$

where $u=u(x, t), v$ and U are constant，and $H(t)$ is the Heaviside unit－step function．
Hint：For $f(t)=\operatorname{erfc}\left(\frac{a}{2 \sqrt{t}}\right)$ ，with $\operatorname{erfc}(\eta)=1-\frac{2}{\sqrt{\pi}} \int_{0}^{\eta} e^{-\xi^{2}} d \xi$ being the complementary error
function，the Laplace transform $F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t=\frac{\exp (-a \sqrt{s})}{s}$ ．

第2頁，共2頁

4．（15\％）The inverse Laplace transform can be written as

$$
f(t)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} e^{s t} F(s) d s
$$

where the path of integral with respect to s is a vertical line parallel to the imaginary axis， and is on the right of all the singularities of $F(s)$ ，in the complex s plane．

Now，by use of the residue theorem，calculate the inverse Laplace transform of $\frac{s^{3}}{s^{4}-a^{4}}$ ．
5．（ $\mathbf{1 5 \%}$ ）Determine the solution $\mathrm{T}(\mathrm{x}, \mathrm{t})$ of the following boundary value problem．

$$
\frac{\partial^{2} \mathrm{~T}}{\partial \mathrm{t}^{2}}=\frac{\partial^{2} \mathrm{~T}}{\partial \mathrm{x}^{2}}+\mathrm{T}, \quad 0<\mathrm{x}<\pi \quad \text { and } \quad \mathrm{t}>0
$$

with the boundary conditions

$$
T(0, t)=T(\pi, t)=0
$$

and the initial conditions

$$
\mathrm{T}(\mathrm{x}, 0)=\left\{\begin{array}{ll}
\mathrm{x}, & 0<\mathrm{x}<\pi / 2 \\
\pi-\mathrm{x}, & \pi / 2 \leq \mathrm{x}<\pi
\end{array}, \quad \frac{\partial \mathrm{T}}{\partial \mathrm{t}}(\mathrm{x}, 0)=0\right.
$$

6． $\mathbf{(1 5 \%)}$ ）Determine the solution $T(r, \theta)$ of the following boundary value problem．

$$
\frac{\partial^{2} \mathrm{~T}}{\partial \mathrm{r}^{2}}+\frac{1}{\mathrm{r}} \frac{\partial \mathrm{~T}}{\partial \mathrm{r}}+\frac{1}{\mathrm{r}^{2}} \frac{\partial^{2} \mathrm{~T}}{\partial \theta^{2}}=0, \quad 0<\theta<\pi, \quad \text { and } \quad 0<\mathrm{r}<1
$$

with the boundary conditions

$$
\mathrm{T}(\mathrm{r}, 0)=\mathrm{T}(\mathrm{r}, \pi)=0, \quad 0<\mathrm{r}<1
$$

and

$$
\mathrm{T}(1, \theta)=1, \quad 0<\theta<\pi
$$

