第1頁，共3頁

※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。
1．（25\％）In following figure，a particle \mathbf{P} moves down the spiral path which is wrapped around the surface of a right circular cone of base radius b and height h ．The angle α between the tangent to the spiral path at any point and the horizontal tangent to the cone at same point is constant．The motion of \mathbf{P} is controlled so that $\dot{\theta}$ is constant．Define the cylindrical coordinate system for describing the motion of P．Determine the velocity of the particle in terms of $\theta, \dot{\theta}, b, h$ ，and α ．Determine the expression for the acceleration of the particle in terms of $\theta, \dot{\theta}, b, h$ ，and α for any value of θ ．Assume $r=b$ when $\theta=0$ ．

2．（ 25% ）In following figure，the 6 kg block is confined to move along the smooth parabolic path．The attached spring restricts the motion and，due to the roller guide，always remains horizontal as the block descends．If the spring has a stiffness of $\mathrm{k}=10 \mathrm{~N} / \mathrm{m}$ ，and unstretched length of 0.76 m ，determine the normal force of the path on the block at the instant $x=1 \mathrm{~m}$ when the block has a speed of $4 \mathrm{~m} / \mathrm{s}$ ．Also，what is the rate of increase in speed of the block at this point？Neglect the mass of the roller and the spring．

第2頁，共 3頁
※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

3．A uniform thin plate $A B C D$ has a mass of 8 kg and is held in position by three inextensible cords $A E, B F$ ， and $C G$ ．If cord $A E$ is cut，determine at that instant（a）if the plate is undergoing translation or general plane motion，（b）the tension in cords $B F$ and $C G$ ．（20\％）

4．The 4 kg rod $A B$ is attached to a collar of negligible mass at A and to a flywheel at B ．The flywheel has a mass of 16 kg and a radius of gyration of 180 mm ．Knowing that in the position shown the angular velocity of the flywheel is 60 rpm clockwise，determine the velocity of the flywheel when point B is directly below C ．

第3頁，共 3 頁

5．A homogeneous wire of length $2 l$ is bent as shown in the figure and allowed to oscillate about a frictionless pin at B ．Denoting the period of small oscillations by τ_{o} when $\beta=0$ ，determine the angle β for which the period of small oscillations is $2 \tau_{0}$ ．（15\％）

