編號: 77

國立成功大學 105 學年度碩士班招生考試試題

系 所:機械工程學系

考試科目:自動控制

考試日期:0227, 節次:1

第/頁,共3頁

※考生請注意:本試題不可使用計算機。請於答案卷(卡)作答,於本試題紙上作答者,不予計分。 1. (25%)

There are six different pole/zero patterns (1)~(6) and six different step responses (A)~(F) as shown in Fig. 1. Please match each pole/zero pattern with the correct step response and give the reason for justifying your answer.

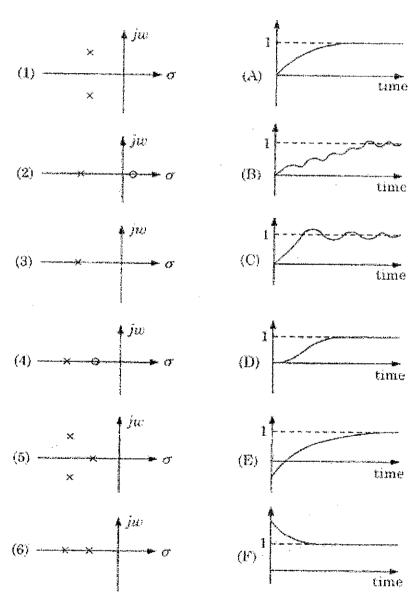


Figure 1

編號: 77

國立成功大學 105 學年度碩士班招生考試試題

系 所:機械工程學系

考試科目:自動控制

考試日期:0227,節次:1

第2頁,共3頁

2. (25%)

A feedback control system has the structure shown in Fig. 2.

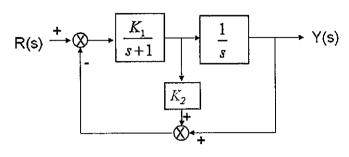


Figure 2

- (1) (10%) Determine the closed-loop transfer function Y(s)/R(s)
- (2) (8%) Determine the gains K_1 and K_2 so that the closed-loop response to a unit-step input is critically damped with two equal roots at s = -10.
- (3) (7%) Based on the answer of (2), please derive the unit-step response y(t).

Useful Laplace formulas:

$$\mathcal{L}[t] = \frac{1}{s^2} \qquad \qquad \mathcal{L}[e^{-at}] = \frac{1}{s+a} \qquad \qquad \mathcal{L}[te^{-at}] = \frac{1}{(s+a)^2}$$

$$\mathcal{L}[\sin \omega t] = \frac{\omega}{s^2 + \omega^2} \qquad \qquad \mathcal{L}[\cos \omega t] = \frac{s}{s^2 + \omega^2} \qquad \qquad \mathcal{L}[e^{-at} f(t)] = F(s+a)$$

$$\mathcal{L}[tf(t)] = -\frac{d}{ds}F(s) \qquad \qquad \mathcal{L}[\frac{df(t)}{dt}] = sF(s) \qquad \qquad \mathcal{L}[\int_0^t f(\tau)d\tau] = \frac{F(s)}{s}$$

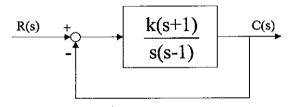
編號: 77

國立成功大學 105 學年度碩士班招生考試試題

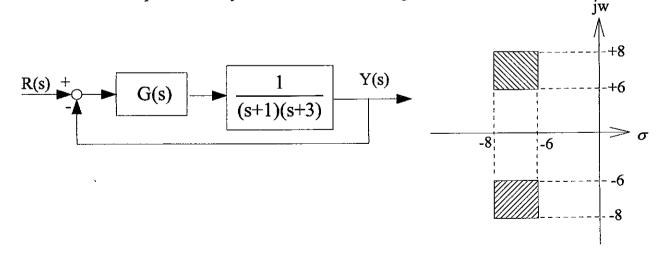
系 所:機械工程學系

考試科目:自動控制

考試日期:0227,節次:1


第3頁、共3頁

※考生請注意:本試題不可使用計算機。請於答案卷(卡)作答,於本試題紙上作答者,不予計分。


3. (20%) A pure inertia system, 1/(ms²), is under linear unity feedback control. The controller is of PID type,

$$G_c(s)=K_c(1+1/(T_is)+T_ds)$$

- i) An engineer from the Alpha Inc. has tuned the controller so that the closed-loop poles are all at -2 when m=5. What are the values of K_c , T_i and T_d that he selected? (5%)
- ii) The inertia m may be subject to change. For the values of K_c , T_i and T_d that you obtained in i), the closed-loop system cannot remain stable for all m>0. Find the condition(s) for stability. Find all the closed-loop poles at the stability boundary also. (10%)
- iii) Draw the root locus plot for m changing from 0 to ∞ when the values of K_c , T_i and T_d are fixed to what you obtained in i). (5%)
- 4. (10%) Consider the closed-loop system shown below. Determine the range of k for stability by use of the Nyquist stability criterion.

- 5. (20%) Consider the closed-loop system shown below.
 - i) If G(s)=k $(k \ge 0)$, sketch the root locus as k varies from 0 to ∞ . (5%)
 - ii) You are requested to design a new controller, G(s), for the system using root-locus method such that the dominant poles of the system are located in the region shown in the s-plane. (15%)

