編號: 72

## 國立成功大學 108 學年度碩士班招生考試試題

系 所:機械工程學系 考試科目:機械製造及材料

考試日期:0223, 節次:2

## 第1頁,共2頁

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- 1. (a) Draw a typical stress-strain diagram for a metal and illustrate (1) proportional limit, (2) elastic limit,
  - (3) yield strength, (4) tensile strength, (5) fracture point, and (6) Young's modulus. (12%)
  - (b) What are the engineering strain and true strain? (4%)
- 2. (a) What is the composition, in atom percent, of an alloy that contains 45.2 kg of copper, 46.3 kg of zinc, and 0.95 kg of lead? (molecule weight of Cu: 63.55g/mol, Zn: 65.41g/mol, Pb: 207.2g/mol)? (6%)
  - (b) Calculate the number-average molecular weight of a random nitrile rubber copolymer [poly(acrylonitrile( $C_3H_3N$ )<sub>m</sub>-butadiene ( $C_4H_6$ )<sub>n</sub>)] in which the fraction of butadiene repeat units is 0.30; assume that this concentration corresponds to a degree of polymerization of 2600. (8%)
- 3. Referred to the binary Cu-Zn phase diagram below. For a 30 wt% Zn-70 wt% Cu alloy, make schematic sketches of the microstructure that would be observed for conditions of very slow cooling at the following temperatures: 1100 °C, 950 °C, 900 °C, and 700 °C. Label all phases and indicate their approximate compositions. (20%)



編號: 72

## 國立成功大學 108 學年度碩士班招生考試試題

系 所:機械工程學系 考試科目:機械製造及材料

考試日期:0223,節次:2

## 第2頁,共2頁

- 4. Explain the following casting processes
  - (a) Sand casting (5%)
  - (b) Investment casting (5%)
  - (c) Die casting (5%)
- 5. In an orthogonal cutting test, the tool rake angle is  $\alpha=5^{\circ}$ , cutting speed is  $V=30\,$  m/min, chip width is  $b=3\,$  mm, uncut chip thickness is  $t_0=0.2\,$  mm, and the chip thickness is  $t=0.4\,$  mm. The measured cutting force  $F_c=1300\,$  N and thrust force  $F_t=600\,$  N. Based on the Merchant's force circle, please calculate the following values.
  - (a) Material removal rate (3%)
  - (b) Specific energy  $u_t$  (3%)
  - (c) Friction angle  $\beta$  (3%)
  - (d) Shear angle  $\phi$  (3%)
  - (e) Average shear stress  $\tau$  in the shear plane (3%)



- 6. Discuss the advantages and disadvantages of forging, machining, and additive manufacturing processes. (10%)
- 7. Explain and compare electrical-discharge machining and laser machining processes. (10%)