編號: 75

國立成功大學 109 學年度碩士班招生考試試題

系 所:機械工程學系 考試科目:機械製造及材料

考試日期:0210,節次:2

第1頁,共2頁

- ※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
- 1. Explain or distinguish the following terms: (12%)
 - (a) Toughness vs Resilience
- (b) Coarse pearlite vs fine pearlite

- (c) Isotropic vs anisotropic
- 2. (a) Compare interstitial and vacancy atomic mechanisms for diffusion (6%)
 - (b) Cite two reasons why interstitial diffusion is normally more rapid than vacancy diffusion. (6%)
 - (c) What is Fick's first law for diffusion? (4%)
- 3. (a) Considering the Cu-Ni phase diagram (Fig. 1), derive the lever rule (represented by W_{α} , and W_L , C_L , C_0 , C_{α})? (10%)
 - (b) See Fig. 2, for a 99.6 wt% Fe-0.40 wt% C steel at a temperature just below the eutectoid, determine the amount of cementite, pearlite and proeutectoid ferrite (α) (in grams) that forms in 100 g of steel. (12%)

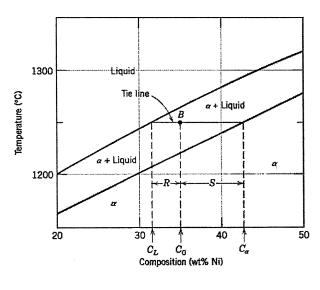


Fig. 1

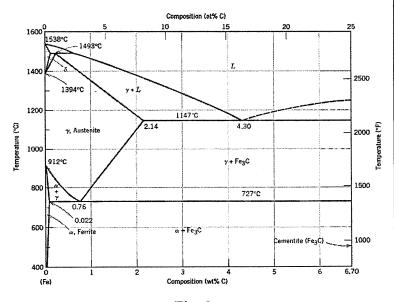


Fig. 2

編號: 75

國立成功大學 109 學年度碩士班招生考試試題

系 所:機械工程學系 考試科目:機械製造及材料

考試日期:0210,節次:2

第2頁,共2頁

- 4. Explain the following manufacturing processes.
 - (a) Powder Metallurgy Process (3%)
 - (b) Selective Laser Sintering (3%)
 - (c) Metal Extrusion (3%)
 - (d) Injection Molding (3%)
 - (e) Photolithography (3%)
- 5. Answer the following questions regarding to stress and strain.
 - (a) What is the difference between true strain and engineering strain? (4%)
 - (b) The relationship between true stress and true strain is $\sigma = K\epsilon^n$, where σ is true stress, ϵ is true strain, K and n are constants. For low carbon steel, K is 530 MPa and n is 0.26. What is the engineering ultimate tensile stress? (4%)
 - (c) Please derive that $n = \epsilon$ in the condition of necking. (7%)
- 6. Answer the following questions.
 - (a) What is the specific energy in machining? (5%)
 - (b) For steels, the specific energy is about 2-9 W·s/mm³ in cutting, and it is 14-68 W·s/mm³ in grinding. Why the specific energy in grinding is much higher than that in cutting? (5%)
- 7. Explain and compare Laser Machining and Electricial-discharged Machining. Which one would cause thermal damage on the workpiece? (10%)