國立成功大學71 學年度找机成的考試(多

- 1.(20%) Define or describe the following
 - (a) reversible and irreversible process
 - (b) principles of the increase of entropy
 - (c) Mollier and Psychrometric Chart
 - (d) the first law and second law efficiency .
- 2. (20%) A heat engine operating on a Carnot cycle has an efficiency of 60 % with 600 KJ/cycle taken from the high temperature reservoirs at 417 °C. Calculate
- (a) the sink temperature, in degrees Celsius
- (b) the heat rejected to the sink per cycle *
- (c)the entropy changes of heat source and heat sink in KJ/(K)(cycle)
- 3. (20%) A rigid, insulated tank is divided into two compartments by a partition. Initially N, moles of gas A fills one compartment at P and T. . The other compartment contains N $_{\mbox{\scriptsize Z}}$ moles of gas B at $\mathbf{P_2}$ and $\mathbf{T_2}$. The partition is removed and the gases allowed to mix. Determine the temperature and pressure of the mixture and the entropy change of each gas. Assume the C_p and C_v of each gas are given. The universal gas constant is R.
- 4. (20%) Find the change of enthalpy and entropy from state T_{\parallel} and P_1 to a state of higher value of T_2 and P_2 for a gas whose equation of state is PV = RT - (aP/T) + bP and whose specific heat at a pressure P_0 is given by $C_{p,0} = 1 + cT$; a,b,c are constants, and P_o is less than P_i and P_2 .

5.

A leak occurs in a rigid, well-insulated, evacuated tank which has a volume of $5\mathrm{m}^3$, and as a result, atmospheric air at 100 Kpa, and 20° C enters the tank. When the pressure in the tank reaches 100Kpa,

- (a) Describe the conservation of mass and the conservation of energy in the thermal system. (3%)
- (b) What is the mass of the air in the tank? (= ...)
- (c) Use the second law to show the process to be irreversible and calculate the irreversibility of this process. (10%)