共 2 頁 學年度 花跃的考試(流館)学 國立成功大學 8

1. Consider turbulent flow of an incompressible fluid past a flat plate. The boundary layer velocity profile is assumed to be $u/U = (y/\delta)^{\mu r} = Y^{\mu r}$ for $Y = y/\delta \le 1$ and u=U for Y > 1. This is a reasonable approximation of experimentally observed profiles, except very near the plate where this formula gives $\partial u/\partial y = \infty$ at y=0. Also assume that the shear stress agree with the experimentally determined formula:

$$\tau_w = 0.0225 \rho U^2 \left(\frac{v}{U\delta}\right)^{1/4}$$

Determine: (1). the boundary layer thickness, (2). the momentum thickness,

(3). the displacement thickness

(4). the wall shear stress t_* (5). the friction drag coefficient C_{Df}

2. The concentric cylinder device of the type shown in Fig. 2 is commonly used to measure the viscosity, $\mathcal M$, of liquids by relating the angle twist, $\boldsymbol \theta$, of the inner cylinder to the angular velocity, $\boldsymbol \omega$, of the outer cylinder. Assume that

$$\theta = f(\omega, \mu, K, D_1, D_2, \ell)$$

where K depends on the suspending wire properties and has the dimension FL. The following data were obtained in a series of tests for which μ =0.01 lb.s/ft², K=10 lb.ft, ℓ =1 ft, and D_1 and D_2 were constant.

. θ (rad)	ω (rad/s)	
0.89	0.30	
1.50	0.50	
2.51	0.82	
3.05	1.05	
4.28	1.43	
5.52	1.86	
6.40	2.14	

Determine from these data, with the aid of dimensional analysis, the relationship between θ , ω and μ for this particular apparatus.

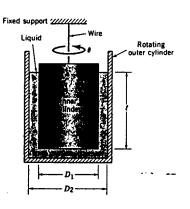


Fig. 2

063

國立成功大學 87 學年度報號所考試(流智力学 試題)

3. We consider a laminar flow in an annulus. Fig.3 shows a cross-sectional view of an annular duct. The annular flow area is bounded by the inside surface of the outer duct (radius R_1) and the outside surface of the inner duct (radius R_2). We also define the ratio of these diameters as

$$\kappa = \frac{R_2}{R_1}$$

- (1). determine the velocity distribution for fully developed flow.
 (2): determine the hydraulic diameter
 (3). give the friction factor f in terms of the pressure gradient in the axial direction.
- (4). determine the friction factor as a function of Reynolds number ($Re = \frac{\rho V(2R)}{(1-\kappa)}$ is average velocity).

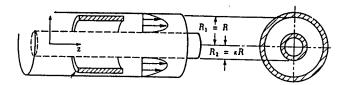


Fig. 3

- 4. Make a comparison between the energy equation and Bernoulli equation. (15%)
- 5. The U-tube of Fig. 5 contains mercury and rotates about the off-center axis a-a. At rest, the depth of mercury in each leg is 150 mm as illustrated. Determine the angular velocity for which the difference in heights between the two legs is 75 mm. (15%)
- $\pmb{\delta}$. A constant-thickness film of viscous liquid flows in laminar motion down a plate inclined at angle θ , as in Fig. δ . The velocity profile is

$$u = Cy(2h-y) \qquad v = w = 0$$

Find the constant C in terms of specific weight and viscosity and the angle θ , and the volume flux Q per unit width in terms of these paramters. (20%) "

.. .1

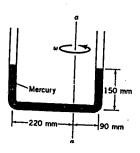


Fig. 5

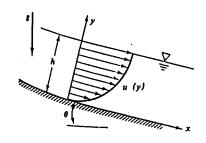


Fig. 6

06