
图学年度 國立成功大學 機 城 不程所 工程数学 裁题 共 2 頁 有一班招生考试 粮 城 不程所 工程数学 裁题 第 / 頁

- (1) (10%) Show that any equation y'' + 2p(x)y' + q(x)y = 0 can be reduced to the "canonical form" v'' + r(x)v = 0 by a change of dependent variable y = a(x)v; that is, determine a(x) and r(x).
- (2) (10%) If the complementary solution of y'' + p(x)y' + q(x)y = f(x) is $Ay_1(x) + By_2(x)$, **DERIVE** the general solution (Note that your solution may include the Wronskian).
- (3) (10%) If $\hat{\mathbf{A}}$ is a constant vector and $\mathbf{r} = \sqrt{x^2 + y^2 + z^2}$, show that $\hat{\mathbf{A}} \bullet \nabla (\frac{1}{r}) = -\frac{\hat{\mathbf{A}} \bullet \hat{\mathbf{r}}}{r^2}$ and $\nabla (\hat{\mathbf{A}} \bullet \hat{\mathbf{r}}) = \hat{\mathbf{A}}$
- (4) (7%) What (acute) angle does $\hat{\mathbf{A}} = \hat{\mathbf{i}} + 2\hat{\mathbf{k}}$ make with the normal to the plane containing the vectors $\hat{\mathbf{B}} = \hat{\mathbf{j}} \hat{\mathbf{k}}$ and $\hat{\mathbf{C}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$?
- (5) (13%) As shown in the figure, the mass m is initially at rest. At t = 0 a unit impulsive force is applied. Thus mx + kx = δ(t), subject to the initial conditions x(0) = x(0) = 0. Solve for x(t) by Laplace transform. Is x(t) continuous at t = 0? Comment and resolve.

②华年度 图立成功大学 楼楼工程研究所 工程数学 试题 共2 頁第2 页

- 6. Find all values of the followings:
 - (a) $(5\%) t^{1}$
 - (b) (5%) $\log(t^n)$

where $t = \sqrt{-1}$ and z = x + iy.

7. (10%) Let

$$A = \begin{bmatrix} 3 & 4 \\ -5 & -5 \end{bmatrix}$$

Find all eigenvalues and the corresponding eigenvectors of A viewed as matrix over (a) the field of real number, (b) the field of complex number.

8. Consider the eigenvalue problem in 0 < x < 1

$$y''(x) + \lambda y(x) = 0$$
.

with mixed boundary conditions, y(0) = 0, y'(0) = y(1).

- (a) (10%) Show that there is only one real eigenvalue. What is the corresponding eigenfunction?
- (b) (5%) Why does the Sturm-Liouville theorem fail which states that there are infinitely many real eigenvalues?
- 9. (15%) Solve the one-dimensional heat equation

$$\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}$$

with the initial point source, T(x,0) = QS(x), and the boundary conditions, $T(x \to \pm \infty, t) = 0$, where α and Q are constants.