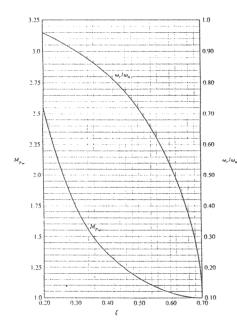
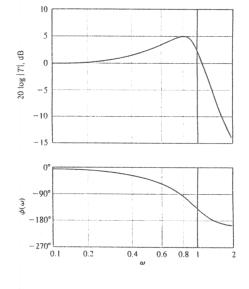
9D 學年度 國立成功大學 機械工程 新成 自動控制 試題 共二頁 第一頁

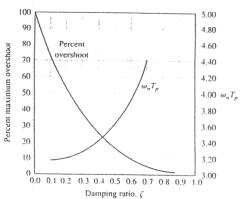
- (25%) The type I diabetes(糖尿病) is caused by lesion in the pancreas(胰臟) of patients. The patient's beta cells in pancreas can not secrete insulin(胰島素) which can assist the break-down of glucose(葡萄糖) in muscle cells and the glucose concentration in blood stream remains high. For the past two decades, biomedical engineers have been working on a device (control system) that can sense the glucose level in blood stream and inject right amount of synthesized insulin into the body. Recent developments in micro-electro-mechanical systems have provided us miniaturized glucose sensor and insulin micro pump to deliver insulin. If you are the project engineer of a biotechnology company and your job is to develop an implantable(植入式) artificial pancreas. Design such a system and draw a block diagram of your system and provide a design procedure for this product. What kinds of engineering analysis are to be performed? What kinds of control algorithms can be used for such control system?
- 2 (25%) What is the **root-locus** method? Using the root-locus method to explain that proportional feedback for a third-order system may result in an unstable system, if the gain is too high. Assume that the third-order system has three poles located at left half S-plane and no zero. Show that a proportional-plus-derivative (PD) control can be used to improve relative stability of the third-order system.

(背面仍有題目,請繼續作答)


9D 學年度 國立成功大學 機, 概 (成) 新 自 重力 控制 試題 共二 頁 第二頁

- Prove that the sinusoidal signal is invariant under the transformation of a linear time –invariant system.
 (20%)
- 4. Consider a unity feedback system with proportional controller K and plant $G(s)=\exp(-0.1s)/(s+4)$. Select K such that the phase margin of the system is 40° . Determine the gain margin for the selected gain K. (15%)
- 5. Consider a unity feedback control system with proportional controller K and plant G(s)=1/(s(s+1)(s+2)). Assume that the system has dominated second-order poles; find the control gain K to satisfy:
 - 1) percent of overshoot=35%±5%
 - 2) settling time=15±3sec.


(15%)


You may need the following design graphs.

The maximum of the frequency response, $M_{\rm p,r}$, and the resonant frequency, $\omega_{\rm r}$, versus ζ for a pair of complex conjugate poles.

Bode diagram for closed-loop system.

Percent overshoot and normalized peak time versus damping ratio ζ for a second-order