- What is the definition of shear strain(4%)? According to the definition of shear strain, please use cylindrical coordinate r, θ, z to describe the shear strain in the torsion of circular shaft (4%). Please derive the torsion formula equation τ = T ρ / J (12%). If you cannot derive the equation, you may explain the terms τ, T, ρ and J to get a partial score(4%).
- A cylindrical thin-walled pressure vessel with inner radius 30 mm and outer radius 33 mm is subjected simultaneously to an internal pressure 15 Mpa and a torque 2 KN-m. Use (i) maximum distortion energy and (ii) maximum shear stress theory to check if the pressure vessel will yield or not? The yield strength for the vessel is σ_y = 250MPa(30%).

(背面仍有題目,請繼續作答)

93學年度國立成功大學 機械工程學系 乙組 材料力學

世 共 シ 真 ま シ 頁

- 3. A beam simply supported at point A and fixed at point B is shown in Figure 3(a). Figure 3(b) shows the cross section of the beam. Assume the modulus of elasticity is E.
 - (1) Determine the reactions at points A and B by using:
 - (i) Integration method (10%);
 - (ii) Singularity function method (10%);
 - (iii) Superposition method (5%);
 - (iv) Castigliano's theory (10%);
 - (2) Plot the shear force and bending moment diagrams (5%);
 - (3) Compute the maximum tensile bending stress in beam (10%).

Note: use the attached table in question (1)-(iii).

Table.

Beam r I P	Slope	Deflection
Γ _{int} (F _{int})	$\theta_{\text{max}} = \frac{-PL^2}{2EI}$	$v_{\max} = \frac{-PL^3}{3EI}$
$\frac{\theta_{\rm i}}{M_{\rm o}}$	$\theta_{\text{max}} = \frac{M_0 L}{EI}$	$v_{\max} = \frac{M_0 L^2}{2EI}$