國立成功大學九十五學年度碩士班招生考試試題

編號: ビ100 系所:機械工程學系戊組

科目:自動控制

本試題是否可以使用計算機: 如可使用 , 二不可使用 (請命題老師勾選)

1. Construct a mathematical model and explain the behavior of measuring human's temperature.

(15%)

- Use mathematical formulation to describe a method for simulating the sinusoidal response of a second-order linear time-varying system.
 (15%)
- 3. Use mathematical formulation to describe the advantages and disadvantages of using feedback in controlling the speed of a DC-motor system.

 (20%)

(背面仍有题目,請繼續作答)

共 2 頁,第2頁

國立成功大學九十五學年度碩士班招生考試試題

編號: 100 系所:機械工程學系戊組

科目:自動控制

本試題是否可以使用計算機: ☑可使用 , □不可使用 (請命題老師勾選)

4. (20%) Consider a system (Fig. P4) with loop transfer function:

$$G(s)H(s) = \frac{k(s+2)}{(s+10)(s-1)}$$
.

- (a) What is Nyquist stability criterion?
- (b) Use the Nyquist stability to determine the range of k such that the closed-loop system is stable.

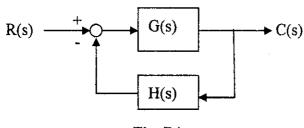


Fig. P4

- 5. (30%) A block diagram of a simplified model of the human respiratory control system is shown in Fig. P5. The objective is to control the effective ventilation of the lungs such that a satisfactory balance of concentrations of carbon dioxide and oxygen is maintained in the blood circulated at the chemoreceptor.
- (a) Plot the Bode diagram of the open-loop transfer function G(s) when $G_c(s)=1$. Find the gain margin and phase margin.
- (b) Design a PI controller, $G_c(s) = K_p + K_l/s$, so that following specifications are satisfied:

Velocity error constant K_v=1 for ramp reference input.

Phase margin is maximized.

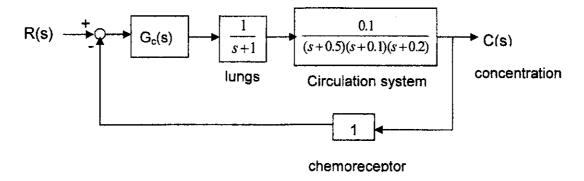


Fig. P5