編號: 96 系所:機械工程學系丁組

科目:材料力學

本試題是否可以使用計算機: □可使用 , □不可使用 (請命題老師勾選)

1. A steel shaft is to be manufactured as a circular tube (Fig. 2). The shaft is required to transmit a torque of 1500 N • m without exceeding an allowable shear stress of 60 MPa nor an allowing rate of twist of 0.6° /m. (The shear modulus of elasticity of the steel is 78GPa). Determine the required outer diameter d_2 of the hollow shaft if the thickness t of the shaft is specified as one-tenth of the outer diameter. (25%)

Fig. L

2. A beam ABC with an overhang supports a uniform load of intensity q= 6 kN/m and a concentrated load P= 28kN (Fig. 3). Calculated the shear force V and bending moment M at a cross section D located 5m from the left-hand support. (25%)

(背面仍有題目,請繼續作答)

國立成功大學九十六學年度碩士班招生考試試題

編號: 96 系所:機械工程學系丁組

科目:材料力學

本試題是否可以使用計算機: □可使用 ,□不可使用 (請命題老師勾選)

3. Shown in Fig. 3 (a) is a square element in plane stress. Also shown in Fig. 3(b) is the element's inclined plane (denoted as θ plane) having its normal at the angle θ with the x axis. (a) Determine the total force exerted in A, B, and θ planes and given answers in Table 1, if the area of θ plane is A_{θ} .

(10%). (b) Based on Table 1, write out the equations of equilibrium in terms of σ_x , σ_y , τ_{xy} , τ_{yx} ,

 σ_{θ} , and τ_{θ} (10%). (c) Determine the normal and shear stresses(σ_{θ} and τ_{θ}) on θ plane. (5%)

	x component force	Y component force
A plane		
B plane		
The inclined plane		

Table 1.

Fig. 3

4. A circular shaft (Fig. 4) with radius r is subjected to pure torsion T. We usually assume that the rate of change $d\phi/dx$ of the angle of twist is constant along the length of the shaft. (1) Derive polar moment of inertia J of the circular cross section (10%). (2) Derive, step by step, the total angle of twist ϕ in terms of torsion T, polar moment of inertia J, length L, and shear modulus of elasticity G (15%)

Fig. 4