編號:

95

國立成功大學九十八學年度碩士班招生考試試題

共2頁,第|頁

系所組別: 機械工程學系甲、乙、丙、丁、戊組

考試科目: 工程數學

考試日期:0307, 節次:3

(7%)

※ 考生請注意:本試題 □可 ☑不可 使用計算機

1. The equations that govern the reaction rates of a simple chemical reaction system,

$$A_1 \leftrightarrow A_2$$
, are $-\frac{d[A_1]}{dt} = k_1[A_1] - k_2[A_2]$, and $-\frac{d[A_2]}{dt} = -k_1[A_1] + k_2[A_2]$. [A₁] and [A₂]

denote concentrations of species A_1 and A_2 , respectively. k_1 is the forward reaction rate coefficient and k_2 is the rate coefficient for the reverse reaction. At time t=0, it is known that the concentration for A_1 equals to A_0 , and no species A_2 exists. Please derive expressions for evolutions of species concentrations, $[A_1]$ and $[A_2]$, in terms of A_0 , k_1 , and k_2 . Determine the concentrations of species A_1 and A_2 when the system reaches steady state. Show your work step by step. (10%)

2. Derive the solution of the following equation and boundary conditions:

$$f\frac{d\eta}{dx} = D\frac{d^2\eta}{dx^2} + (1-\eta)$$

$$\eta(0) = \eta^*$$
 and $\eta(\infty) = 1$

f and D are constants, and D > 0. Your solution should be in terms of f, D, η^* , and x. (8%)

3. Find the general solution formula to the equation

$$\frac{d^3x}{dt^3} + 3\frac{d^2x}{dt^2} + 3\frac{dx}{dt} + x = 0$$
In the colution asymptotically sta

Is the solution asymptotically stable?

4. Evaluate $\oint_C (y - \sin x) dx + \cos x dy$ where C is the triangle of the adjoining figure as shown in Fig. 1:

(a) directly (10%)

(b) by using Green's theorem in the plane. (15%)

5. If
$$f(t) = \begin{cases} 2, & -2 \le t < -1 \\ 1, & -1 \le t < 1 \\ 2, & 1 \le t \le 2 \end{cases}$$

(a). find the Fourier Series of f(t). (10%)

(b). find the value of the Fourier Series, found in (a), converges to, when t is an integer. (5%)

(c). find the steady state solution of the O.D.E: y'' + 25y = f(t), where $y'' \equiv d^2y/dt^2$. (10%)

編號:

95

國立成功大學九十八學年度碩士班招生考試試題

共之頁,第7頁

系所組別: 機械工程學系甲、乙、丙、丁、戊組

考試科目: 工程數學

考試日期:0307, 節次:3

※ 考生請注意:本試題 □可 □ □ 不可 使用計算機

6.

Find the Laurent expansion of the complex function $f(z) = \frac{z+2}{z^2+4}$ about the point z = 2i. (15%)

Evaluate the integrals $\oint \frac{e^{2z}}{z^2(z-2z-3)} dz$ along the path C that is the

counterclockwise circle with z = |4|.

(10%)

Fig. 1