1．Please find the derivative of the following functions．（ $18 \%$ ）
（1） $\mathrm{y}=3 \sec ^{2}(\pi x-1)$
（2）$y=\log _{5} \frac{x \sqrt{x-1}}{2}$
（3）$y=\ln \left(\frac{1+e^{x}}{1-e^{x}}\right)$

2．When satellites observe Earth，some satellites have sensors that are capable to measure the angle $\theta$ as shown in the figure．Let $h$ denote the distance between satellite and Earth＇s surface and let $r$ represent Earth＇s radius（ $r=6378 \mathrm{~km}$ ）．Please calculate the rate at which $h$ is changing with respect to $\theta$ when $\theta=30^{\circ}$ ．（15\％）


3．Please answer the following questions．（ $22 \%$ ）
（1）Please find the extreme and reflection points of $f(x)=x^{2} e^{-x}$
（2）Please find an equation of tangent line to the graph of $y=(\ln x)^{\cos x}$ at $(e, 1)$
（3）Let $0 \leq x \leq 2$ ，please evaluate the definite integral for the surface area generated by revolving $y=1-\frac{x^{2}}{4}$ about the $y$－axis．

4．Please evaluate the integral of the following functions．（25\％）
（1） $\int_{1}^{9} \frac{1}{\sqrt{x}(1+\sqrt{x})^{2}} d x$
（2） $\int \frac{1}{\sec x \tan x} d x$
（3） $\int \frac{x}{16 x^{4}-1} d x$
（3） $\int \frac{x}{16 x^{4}-1} d x$
（4） $\int_{0}^{1} e^{x} \sin x d x$
（5） $\int_{0}^{\pi} \int_{0}^{\sin x}(1+\cos x) d y d x$
5．The maximum volume of an ellipsoid．（20\％）
（1）Please calculate the volume of an ellipsoid given by $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ ．
（2）For a fixed sum $a+b+c=k$ ，please show that the ellipsoid of maximum volume is a sphere． （10\％）

