※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

1．Please solve the following differential equations：（ 5 points for each one）
A．$y^{\prime \prime}-5 y^{\prime}+4 y=\cos ^{2} x$
B．$y^{\prime \prime \prime}+y^{\prime \prime}=e^{x} \cos x$
C．$y^{\prime \prime}+4 y^{\prime}+5 y=\delta(t-2 \pi)$ with $y(0)=0, y^{\prime}(0)=0$

2．For two concentric spheres of radius $r=a$ and $r=b, a<b$ ，the temperature $u(r)$ in the region between the spheres is determined from the boundary－value problem $r \frac{d^{2} u}{d r^{2}}+2 \frac{d u}{d r}=0, \quad u(a)=u_{0}, \quad u(b)=u_{1}$, where u_{0} and u_{1} are constants．Please solve for $u(r)$ ．（10 points）

3．The input flow rate and concentration into a CSTR are Q and $C 0$ ，respectively and those of output are Q and C ．If the volume of the CSTR is V ，please compute the concentration as a function of time if the initial concentration in the CSTR is zero and the chemical reaction is of second order decay．（10 points）

4．For the first－order differential equation $\frac{d y}{d x}=f(x, y)$ ，please derive the truncation errors for the fourth order Runge－Kutta method used in a single step and multiple steps．（15 points）

5．For the Laplace＇s equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ ，please find the solutions for the following conditions．（15 points for each one）
A． $\begin{cases}u(0, y)=1, & \lim _{x \rightarrow \infty} u(x, y)=0, \\ \left|\frac{\partial u}{\partial y}\right|_{y=0}=0, & \left.\frac{\partial u}{\partial y}\right|_{y=1}=-u(x, 1), \\ x>0\end{cases}$
B．$\left\{\begin{array}{c}u(0, y)=0, \quad u(1, y)=0, \quad 0<y<1 \\ \left.\frac{\partial u}{\partial y}\right|_{y=0}=u(x, 0), \quad u(x, 1)=1, \quad 0<x<1\end{array}\right.$

6．The Dufort－Frankel method for the partial differential equation $\frac{\partial T}{\partial t}=\frac{\partial^{2} T}{\partial x^{2}}$ is
$\frac{T_{i}^{n+1}-T_{i}^{n-1}}{2 \Delta t}=\frac{T_{1+1}^{n}-\left(T_{i}^{n+1}+T_{i}^{n-1}\right)+T_{i-1}^{n}}{\Delta x^{2}}$ ，（A）please derive the truncation error；（B）please derive the conditions for consistency．（20 points）

