· 編號:

141

國立成功大學109學年度碩十班招生考試試題

所:環境工程學系

考試科目: 工程數學

考試日期:0210, 節次:3

第/頁,共/頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

1. Please find the solutions for the following differential equations: (5 points for each one)

A.
$$y''+(y')^2+1=0$$

B.
$$x^2y''-4xy'+6y = \ln x^2$$
 C. $y''-5y'+4y = \cos^2 x$

C.
$$y''-5y'+4y = \cos^2 x$$

D.
$$y'' + 4y' + 13y = \delta(t - \pi) + \delta(t - 3\pi)$$
 with $y(0) = 1$, $y'(0) = 1$ E. $y'' + 2y' + y = xe^{-x}$

E.
$$v''+2v'+v=xe^{-x}$$

2. Water is pumped into an empty cylindrical tank of diameter D at a constant flow rate Q. A round hole of diameter d is at the bottom of the tank and water flows out from the hole by gravity. Please find the height of water level in the tank as a function of time. (15 points)

3. Find the solutions of $\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial r^2}$ for the following conditions. (10 points for each one)

A.
$$\begin{cases} u(x,0) = 1, & 0 < x < 1 \\ t > 0, & u(0,t) = 0, & \frac{\partial u}{\partial x}\Big|_{x=1} = -u(1,t) \end{cases}$$
B.
$$\begin{cases} u(x,0) = 1, & x > 0 \\ t > 0, & u(0,t) = 5, & u(\infty,t) = 1 \end{cases}$$

B.
$$\begin{cases} u(x,0) = 1, & x > 0 \\ t > 0, & u(0,t) = 5, & u(\infty,t) = 1 \end{cases}$$

4. Find the solutions of $\frac{\partial^2 \mathbf{u}}{\partial x^2} + \frac{\partial^2 \mathbf{u}}{\partial v^2} = 0$ for the following conditions. (15 points for each one)

A.
$$\begin{cases} u(0,y) = 1, & \lim_{x \to \infty} u(x,y) = 0, \quad 0 < y < 1 \\ \frac{\partial u}{\partial y}\Big|_{y=0} = 0, \frac{\partial u}{\partial y}\Big|_{y=1} = -u(x,1), \quad x > 0 \end{cases}$$
B.
$$\begin{cases} u(0,y) = 0, \quad u(\pi,y) = e^{-y}, \quad y > 0 \\ \frac{\partial u}{\partial y}\Big|_{y=0} = 0, \quad 0 < x < \pi \end{cases}$$

B.
$$\begin{cases} u(0, y) = 0, & u(\pi, y) = e^{-y}, \quad y > 0 \\ \frac{\partial u}{\partial y} \Big|_{y=0} = 0, \quad 0 < x < \pi \end{cases}$$

5. If the finite difference equation $\frac{y_{i+1}-2y_i+y_{i-1}}{h^2}+p(x_i)\frac{y_{i+1}-y_{i-1}}{2h}+q(x_i)y_i=r(x_i)$ is used for the differential equation y''+p(x)y'+q(x)y=r(x), please derive the truncation error. (10 points)