國立成功大學 111學年度碩士班招生考試試題

編 號: 140

系 所:環境工程學系

科 目: 衛生工程

日 期: 0219

節 次:第1節

備 註:可使用計算機

國立成功大學 111 學年度碩士班招生考試試題

編號: 140

系 所:環境工程學系 考試科目:衛生工程

考試日期:0219,節次:1

第1頁,共2頁

- ※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
- 1. Answer the following questions or explain the terms. (30%)
- (1) Describe the challenge(s) in the water resource management in Taiwan.
- (2) Please describe how to evaluate if building a reservoir is needed to store the water resource for a river.
- (3) Compare the systems of water transmission by gravity and pumping.
- (4) Given the logC-pH plot as follows, what is the optimal pH in coagulation using FeCl₃ as the coagulant? Explain why.

- (5) DLVO theory describes the inter-particle forces of colloidal particles. Please draw the interaction energy of respective forces (label each force) and the total energy as a function of particle distance when two particles approach each other for FAVORABLE aggregation.
- (6) Explain why the use of multiple media is beneficial in granular filtration.
- 2. Derive the terminal settling velocity (i.e., the Stokes equation) for particle sedimentation. (10%)
- 3. Consider a confined aquifer with a coefficient of transmissivity $T = 680 \, \text{ft}^3/\text{day/ft}$. At $t = 5 \, \text{min}$, the drawdown $s = 5.6 \, \text{ft}$, at 50 min, $s = 23.1 \, \text{ft}$, and at 100 min, $s = 28.2 \, \text{ft}$. The observation well is 75 ft away from the pumping well. Find the discharge, Q, of the well. (10 %)
- 4. Given a flow rate of 7,200 m³/d and detention time of 4 h, design a rectangular coagulation sedimentation tank (i.e., determine the depth, length and width). Please use appropriate rules for your design (i.e., surface loading, length/width ratio, depth, and horizontal velocity). (15%)
- 5. The data for system head and the pump characteristic curves are shown as follows.
 - (1) Determine the flow and head at which the pump operates. (5%)
 - (2) Determine the motor horsepower by assuming appropriate pump and motor efficiencies. (5%)

Total head (m)	Q (m ³ /min)	Total dynamic head (m)	Q (m ³ /min)
95	400	70	500
90	800	80	850
85	1050	85	975
80	1200	90	1075
70	1450	100	1300

編號: 140 國立成功大學 111 學年度碩士班招生考試試題

系 所:環境工程學系 考試科目:衛生工程

考試日期:0219,節次:1

第2頁,共2頁

6. Calculate the recommended minimum backwash rate for a single-medium, coarse-sand filter at 20° C ($\rho_{w} = 998.2 \text{ kg/m}^{3}$; $\mu = 1.0 \times 10^{-3} \text{ kg/m} \cdot \text{s}$). The grain diameter of a sphere of equal volume is 1.2 mm, density of sand is 2650 kg/m^{3} , filter depth is 1.0 m and porosity is 0.4. (15%)

7. Given a reaction rate constant k' of 0.115 L/min·mg at pH = 7.0 and 20°C for disinfection using chlorination, what is the C·t value required for a 3-log removal of Giardia? If the chlorine dose is maintained at 1 mg/L and flow rate Q is 10,000 CMD, what is the size (as m³) of chlorine contact tank? (10 %)