國立成功大學78 學年度環境工程 考試(工程數学 試題) 業/頁

- 1. Solve the following ordinary differential equations:
 - (a) $xy'' + y' = y'^2$ (5%)
 - (b) $\begin{cases} x' = -2x + y \\ y' = -4x + 3y + 10\cos t \end{cases}$ (5%)
 - (c) $y'' 2y' + y = e^{X} + x$ (5%)
 - (d) $(x^2D^2 2xD + 2)y = x^3\cos x$ (5%)
- 2. Answer the following questions: (20%)
 - (1) Wronskian = $W(y_1, y_2, ..., y_n)$ = ? for linear dependence and independence of functions $y_1, y_2, ..., y_n$.
 - (2) What's the radius of convergence of the series $\sum_{n=1}^{\infty} x^{n}/m!$?
 - (3) Legendre polynomial of degree $n, P_n(1) = ?$
 - (4) Gamma function, $\Gamma(\alpha+1)=?$ for $\alpha>0$.
 - (5) An orthonormal set g_1, g_2, \ldots on an interval $a \le x \le b$, $(g_m, g_n) = ? m=1, 2, \ldots; n=1, 2, \ldots$
 - (6) $L^{-1}[1] = ?$
 - (7) Does 1*f = f in general?
 - (8) Does $\overline{AB} = \overline{O}$ imply $\overline{A} = \overline{O}$ or $\overline{B} = \overline{O}$?
 - (9) $\overline{A} = \begin{bmatrix} a_{11} & a_{1} \\ a_{21} & a_{22} \end{bmatrix}, \overline{A}^{-1} = ?$
 - (10) Jacobian = $J = \frac{\partial(x,y)}{\partial(r,\theta)}$ = ? where x,y, are rectangular coordinates and r,0, are polar coordinates.
- 3. Granted sufficient differentiability, find
 - (a) div(curl \overrightarrow{v}) (5%)
 - (b) curl(grad f) (5%)
- 4. Solve the initial value problem

$$y'' + 3y' + 2y = 1 - u(t - 1), y(0)=0, y'(0)=1,$$
 (10%)

where u is the unit step function.

5. Using the Fourier integral representation, show that

$$\int_0^\infty \frac{\text{wsinwx}}{k^2 + w^2} dw = \frac{\pi}{2} e^{-kx} , \quad x>0, \quad k>0$$
 (10%)

6. In a body heat will flow in the direction of decreasing temperature. It can be shown that the velocity \overrightarrow{v} of the heat flow in a body is of the form

$$\overrightarrow{v} = - K \text{ grad } U$$

where U(x,y,z,t) is temperature, t is time and K is the thermal conductivity of the body. Using this information, set up the mathematical model of heat flow, the so-called heat equation, by means of divergence theorem of Gauss.

$$\frac{\partial U}{\partial t} = c^2 \nabla^2 U$$
, $c^2 = \frac{K}{\sigma \rho}$, σ : specific heat (10%)

- 7. (a) Find the temperature U(x,t) in a bar of length L that is perfectly insulated, also at the ends at x=0 and x=L, assuming that U(x,0)=f(x), by the method of separating variables. (15%)
 - (b) What's the corresponding eigenvalue problem? (5%)