

- 1. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x + \tan^{-1}x$, where $\tan^{-1}: \mathbb{R} \to (-\frac{\pi}{2}, \frac{\pi}{2})$ is defined by $\tan^{-1}x = y$ if and only if $\tan y = x$. Graph y = f(x) by giving its essential shape and pointing out its asymptotes and points of inflection.
- 2. Find the work done by the force $f(x,y,z)=(x^2y,xy^2,z^2)$ in moving an object from (0,0,0) to (1,2,3) along the curve $C:[0,1] \to \mathbb{R}^3: C(t)=(t,2t^2,3t^3)$.
- 3. (i) Suppose 0 < c < d. Evaluate $\lim_{n \to \infty} \sqrt[n]{c^n + d^n}$.
 - (ii) Evaluate $\lim_{x\to\infty} x \int_0^x e^{t^2-x^2} dt$. 10%
- 4. (i) Evaluate $\int_{Q} |\cos(x+y)| d(x,y)$, where $Q = [0,\frac{\pi}{2}] \times [0,\frac{\pi}{2}]$.
 - (ii) Use Green's Theorem to evaluate

$$\int_{C} (e^{x} - 3xy) dx + (\sin y + 6x^{2}) dy,$$

where $C: [0,2\pi] \longrightarrow \mathbb{R}^2: C(t) = (\cos t, 2\sin t).$ 10%

- 5. Define $f: \mathbb{R} \to \mathbb{R}: f(x) = \begin{cases} (x^2)^x, & \text{if } x \neq 0, \\ 1, & \text{if } x = 0. \end{cases}$ Is f continuous at 0?
- 6. Suppose $0 and <math>\int_0^\infty \frac{1}{x^p + x^q} dx$ converges. Show that 0 .
- 7. Suppose the temperature distribution on a circular wire ring is a continuous function. Prove that there is a pair of diametrically opposite points at which the temperatures are equal. (Hint: use the intermediate value theorem).
- 8. Suppose $f:[0,1] \to \mathbb{R}$ has a continuous derivative satisfying $0 < f'(x) \le 1$ for all $x \in [0,1]$. Also, suppose f(0) = 0. Prove that $\left[\int_0^1 f(t) dt\right]^2 \ge \int_0^1 (f(t))^3 dt$. (Hint: consider the function $F:[0,1] \to \mathbb{R}: F(x) = (\int_0^x f(t) dt)^2 \int_0^x (f(t))^3 dt$.) 10%

203