國立成功大學八十三學年度環工所入學考試(流體力學 試題)等 / 页码 计班

- 1. A shear stress of 4 dyn/cm² causes a Newtonian fluid to have an angular deformation of 1 rad/s. What is its viscosity in centipoises? (10%)
- 2. (1). The two-dimensional stream function for a flow is $\psi = 9 + 6x 4y + 7xy$. Find the velocity potential. (5%)
 - (2). For $q = i(x+y)+j(y+z)+k(x^2+y^2+z^2)$ find the components of rotation at (1,1,1). (10%)
- 3. What is the pressure at a point 10 m below the free surface in a fluid that has a variable density in kilograms per cubic meter given by $\rho = 450 + ah$, in which $a = 12 \text{ kg/m}^4$ and h is the distance in meters measured from the free surface? (10%)
- 4. A pump with a shaft input of 7.5 kW and an efficiency of 70 percent is connected in a wastewater carrying 0.1 m³/s. The pump has a 150-mm-diameter suction line and a 120-mm-diameter discharge line. The suction line enters the pump 1 m below the discharge line. For a suction pressure of 70 kN/m²,
 - (1). calculate the pressure at the discharge flange; (5%)
 - (2). calculate the rise in the hydraulic grade line across the pump. (5%)
- 5. What are the proportions r_0/h of a right-circular cylinder of specific gravity S so that it will float in water with end faces horizontal in stable equilibrium? [r_0 and h are the radius and the height of this right-circular cylinder, respectively]. (15%)
- 6. A fluid-flow situation depends upon the velocity V, the density ρ , several linear dimensions l, l_1 , l_2 , pressure drop Δp , gravity g, viscosity μ , surface tension σ , and bulk modulus of elasticity K. Apply dimensional analysis to these variables to find a set of Π parameters. (15%)
- 7. At section 1 of a canal the cross section is trapezoidal, $b_1 = 10$ m, $m_1 = 2$, $y_1 = 7$ m, and at section 2, downstream 200 m, the bottom is 0.08 m higher than at section 1, $b_2 = 15$ m, and $m_2 = 3$, Q = 200 m³/s, n = 0.035. Determine the depth of water at section 2. $(V_1^2 V_2^2)/2g + y_1 y_2$

[Hint:
$$\Delta L = \frac{1}{S - S_0}$$
]

(15%)

8. Compute the kinetic-energy correction factors α for laminar flow between fixed parallel plates. (10%)